Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    MOLECULAR DYNAMICS STUDY OF THE COALESCENCE OF EQUAL AND UNEQUAL SIZED Cu NANOPARTICLES

    Molecular dynamics simulations technique is used to study the consolidation of two nanoparticles of Cu element. We have studied sintering processes of two nanoparticles at different temperatures. Two model systems with 4 and 10 nm diameter of particles are selected to study the sintering process of the two nanoparticles. Orientation effects on the physical properties of consolidation of two nanoparticles with respect to each other are investigated. Temperature effects on the consolidation of two nanoparticles are also studied. The order of the values obtained in the simulation for the constant volume heat capacity and latent heat of fusion is good agreement with the bulk results. Moreover, we have investigated the size effects on the consolidation of two different sizes of nanoparticles, that is, one particle of diameter with 10 nm is fixed while the other one is changing from 1 to 10 nm. Melting temperatures of the copper nanoparticles are found to be decreased as the size of the particle decreases. It is found that simulation results are compatible with the other theoretical calculations.

  • articleNo Access

    APPLICATIONS OF FINITE-DIFFERENCE LATTICE BOLTZMANN METHOD TO BREAKUP AND COALESCENCE IN MULTIPHASE FLOWS

    We present an application of the hybrid finite-difference Lattice-Boltzmann model, recently introduced by Lee and coworkers for the numerical simulation of complex multiphase flows.1–4 Three typical test-case applications are discussed, namely Rayleigh–Taylor instability, liquid droplet break-up and coalescence. The numerical simulations of the Rayleigh–Taylor instability confirm the capability of Lee's method to reproduce literature results obtained with previous Lattice-Boltzmann models for non-ideal fluids. Simulations of two-dimensional droplet breakup reproduce the qualitative regimes observed in three-dimensional simulations, with mild quantitative deviations. Finally, the simulation of droplet coalescence highlights major departures from the three-dimensional picture.