Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleFree Access

    COLLAGEN AS IN VIVO QUANTITATIVE FLUORESCENT BIOMARKERS OF ABNORMAL TISSUE CHANGES

    Collagen is an endogenous fluorophore that accounts for about 70% of all proteins of human skin, so it can be an optical marker for structural abnormalities in tissues registered by laser fluorescent diagnostics in vivo. Using the examples of such abnormalities as scars, scleroderma and basal cell carcinoma, this study shows the differences between coefficients of fluorescent contrast kf(λ) of abnormalities from the ones for healthy tissues at fluorescent excitation wavelength 360–380 nm. It is shown that scars and dysplasia are characterized by reduced values of kf(λ) for collagen. Due to high turbidity and phase heterogeneousness as well as variation of parameters of blood microcirculation and concentrations of other related chromophores, there is no mathematical model that precisely calculates the concentration of collagen in tissues only with the use of the value of fluorescent signal intensity. So, probably, the best marker of the pathological process is a comprehensive representation of kf(λ) for all endogenous fluorophores, i.e., for all used visible wavelengths. In this case identification of abnormal tissues is quite possible by detecting some deviations of coefficients kf(λ) for the optically identical and symmetrical regions of the human body.

  • articleOpen Access

    Detection and localization of the hemoglobin and collagen distribution of the uterine cervix

    Changes of the blood vessels and collagen are associated with the development of abnormal cervical cells. Recently, optical coherence tomography and Mueller polarization images were used to provide information regarding the presence of collagen fibers in the cervical tissue. However, most of these methods need a lot of time for image recording and are expensive. In addition, the general survey on the absorption and distribution characteristics of collagen and blood in the cervical is still lacking. In this study, we developed a colposcopy combining cross-polarized image and image processing algorithm with an efficient analytical model to map the distribution of blood and collagen in the uterine. For this system’s proof of concept, we captured and processed the case of cervical ectopy and Nabothian cyst. The results show that the distribution of blood and collagen maps matched with anatomical and physiological when compared with Lugol’s iodine images. This technology has some advantages, such as low cost, real time, and can replace the use of acetic acid or Lugol’s iodine in the future.