Complex systems are usually under the influences of noises. Appropriately modeling these noises requires knowledge about generalized time derivatives and generalized stochastic processes. To this end, a brief introduction to generalized functions theory is provided. Then this theory is applied to fractional Brownian motion and its derivative, both regarded as generalized stochastic processes, and it is demonstrated that the “time derivative of fractional Brownian motion” is correlated and thus is a mathematical model for colored noise. In particular, the “time derivative of the usual Brownian motion” is uncorrelated and hence is an appropriate model for white noise.