Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    MICROCRACKS CHARACTERIZATION FOR THERMAL BARRIER COATINGS AT HIGH TEMPERATURE

    Thermal barrier coatings (TBCs), used in gas turbine blades, are exposed to oxidation and thermal fatigue conditions. The characterization of TBCs was often performed in laboratory experiments, therefore, its detail failure mechanism is not quite obvious. For better understanding of the phenomenon, it is recommended to observe it under the condition simulating the real service conditions of gas turbines. In the present work, ZrO2 coatings were prepared by air plasma spraying (APS). Scanning electron microscope (SEM), equipped with a heating system, was used to study the in situ microstructure change of TBCs at service temperature at which the aircraft is operated. The bond coat (BC) layer's thickening process and thermally grown oxide (TGO) generation along with the cracks growth are revealed. Moreover, the influence of the service temperature and holding time on the failure mechanism of TBCs is discussed. The crack healing produced during the coating re-melting reaction is observed, and it is the key factor to increase the thermal conductivity of the coating.