Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    ELASTIC, PLASTIC, CRACKING ASPECTS OF THE HARDNESS OF MATERIALS

    The hardness properties of materials are tracked from early history until the present time. Emphasis is placed on the hardness test being a useful probe for determining the local elastic, plastic and cracking properties of single crystal, polycrystalline, polyphase or amorphous materials. Beginning from connection made between individual hardness pressure measurements and the conventional stress–strain properties of polycrystalline materials, the newer consideration is described of directly specifying a hardness-type stress–strain relationship based on a continuous loading curve, particularly, as obtained with a spherical indenter. Such effort has received impetus from order-of-magnitude improvements in load and displacement measuring capabilities that are demonstrated for nanoindentation testing. Details of metrology assessments involved in various types of hardness tests are reviewed. A compilation of measurements is presented for the separate aspects of Hertzian elastic, dislocation-mechanics-based plasticity and indentation-fracture-mechanics-based cracking behaviors of materials, including elastic and plastic deformation rate effects. A number of test applications are reviewed, most notably involving the hardness of thin film materials and coatings.

  • articleNo Access

    Effect of inhomogeneous re-oxidation on Ni-based SOFC oxidation resistance

    Inhomogeneous re-oxidation, which causes graded NiO content along anode thickness, has been confirmed to be a key reason for Ni-based cell cracking during redox progress. In this paper, an analytical model is developed to estimate the impact of inhomogeneous re-oxidation on Ni-based solid oxide fuel cell (SOFC) oxidation resistance. And experiments, in which the SOFC was partially re-oxidized, were implemented for model trial. Model results show that electrolyte internal stress can be significantly reduced (from 367 MPa to 135 MPa, when the oxidation degree is 60%), and the electrolyte can remain intact even when the oxidation degree reaches about 70%, if the anode was re-oxidized uniformly. This impact of inhomogeneous re-oxidation on stress in the electrolyte decreases as the anode thickness increases. Scanning electron microscopic (SEM) images of partially oxidized anode cross-sections confirmed that Ni oxidation was inhomogeneous, in which the outer regions of the anode became almost fully oxidized, while the inner regions remained metallic. And the inhomogeneity increases with the redox times. Consequently, it is important to avoid gradients in NiO content during oxidation progress to prevent cell cracking.