Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    FIRST PRINCIPLES CALCULATIONS OF STRUCTURAL, ELECTRONIC, THERMODYNAMIC AND THERMAL PROPERTIES OF BaxSr1-xTe TERNARY ALLOYS

    The structural, electronic thermodynamic and thermal properties of BaxSr1-xTe ternary mixed crystals have been studied using the ab initio full-potential linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT). In this approach, the Perdew–Burke–Ernzerhof-generalized gradient approximation (PBE-GGA) was used for the exchange-correlation potential. Moreover, the recently proposed modified Becke Johnson (mBJ) potential approximation, which successfully corrects the band-gap problem was also used for band structure calculations. The ground-state properties are determined for the cubic bulk materials BaTe, SrTe and their mixed crystals at various concentrations (x = 0.25, 0.5 and 0.75). The effect of composition on lattice constant, bulk modulus and band gap was analyzed. Deviation of the lattice constant from Vegard's law and the bulk modulus from linear concentration dependence (LCD) were observed for the ternary BaxSr1-xTe alloys. The microscopic origins of the gap bowing were explained by using the approach of Zunger and co-workers. On the other hand, the thermodynamic stability of these alloys was investigated by calculating the excess enthalpy of mixing, ΔHm as well as the phase diagram. It was shown that these alloys are stable at high temperature. Thermal effects on some macroscopic properties of BaxSr1-xTe alloys were investigated using the quasi-harmonic Debye model, in which the phononic effects are considered.

  • articleNo Access

    FP-LAPW investigation of the structural, electronic and thermodynamic properties of Al3Ta compound

    The phase stability and electronic properties in Al3Ta compound are studied using the FP-LAPW method. In this approach, the generalized gradient approximation (GGA) is used for the exchange-correlation potential calculation. The total energy calculations show that the D022 structure is more stable than that of D023 and L12. The densities of states exhibit a pseudo gap near the Fermi level for all considered structures. By analyzing the electronic charge density we find a build-up of electrons in the interstitial region, and the bonds are directed from the Ta atoms to the Al atoms, which is the characteristic of covalent bonding. The temperature and pressure effects on the structural parameters, Debye temperature, Grüneisen parameter, heat capacities (Cv, Cp) and thermal expansion are predicted through the quasi-harmonic Debye model.

  • articleNo Access

    First principles calculations of structural, electronic and optical properties of InN compound

    We carried out ab initio calculations of structural, electronic and optical properties of Indium nitride (InN) compound in both zinc blende and wurtzite phases, using the full-potential linearized augmented plane wave method (FP-LAPW), within the framework of density functional theory (DFT). For the exchange and correlation potential, local density approximation (LDA) and generalized gradient approximation (GGA) were used. Moreover, the alternative form of GGA proposed by Engel and Vosko (EV-GGA) and modified Becke–Johnson schemes (mBJ) were also applied for band structure calculations. Ground state properties such as lattice parameter, bulk modulus and its pressure derivative are calculated. Results obtained for band structure of these compounds have been compared with experimental results as well as other first principle computations. Our results show good agreement with the available data. The calculated band structure shows a direct band gap Γ → Γ. In the optical properties section, several optical quantities are investigated; in particular we have deduced the interband transitions from the imaginary part of the dielectric function.

  • articleNo Access

    First-principle study of the structural, mechanical, electronic and thermodynamic properties of intermetallic compounds: Pd3M (M=Sc, Y)

    The mechanical, electronic and thermodynamic properties of Pd3M (M=Sc, Y) compounds have been investigated using the Full Potential Linearized Augmented Plane Wave (FP-LAPW) formalism. The generalized gradient approximation (GGA) is used to treat the exchange–correlation terms. The calculated formation enthalpies and the cohesive energies reveal that the L12 structure is more stable than the D024 one. The obtained lattice parameters and bulk modulus calculations conform well to the available experimental and theoretical results. The elastic and mechanical properties are analyzed and results show that both compounds are ductile in nature. The Debye temperature and melting temperature are also estimated and are in a good agreement with experimental findings. The total and partial densities of states are determined for L12 and D024 structures. The density of states at the Fermi level, N(EF), indicates electronic stability for both compounds. The presence of the pseudo-gap near the Fermi level is suggestive of formation of directional covalent bonding. The number of bonding electrons per atom nb and the electronic specific heat coefficient γ are also determined. The quasi-harmonic Debye model has been used to explore the temperature and pressure effects on the thermodynamic properties for both compounds.

  • articleNo Access

    Theoretical investigation of elastic and phononic properties of Zn1xBexO alloys

    Our calculations were conducted within density functional theory (DFT) and density functional perturbation theory (DFPT) using norm-conserving pseudo-potential and the local density approximation. The elastic constants of Zn1xBexO were calculated, C11, C33 and C44 increase with the increase of Be content, whereas the C12 shows a non-monotonic variation and C13 decreases when Be concentration increases. The values of bulk modulus B, Young’s modulus E and shear modulus G increase with the increase of Be content. Poisson’s ratio σ decreases with increased Be concentration. The ductility decreases with increasing Be concentration and the compressibility for Zn1xBexO along c-axis is smaller than along a-axis. Phonon dispersion curves show that Zn1xBexO is dynamically stable (no soft modes). Quantities such as refractive index, Born effective charge, dielectric constants and optical phonon frequencies were calculated as a function of the Be molar fraction x. The agreement between the present results and the known data that are available only for ZnO and BeO is generally satisfactory. Our results for Zn1xBexO(0<x<1) are predictions.