Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    ANALYSIS AND QUANTIFICATION OF DATA ASSIMILATION BASED ON SEQUENTIAL MONTE CARLO METHODS FOR WILDFIRE SPREAD SIMULATION

    Data assimilation is an important technique to improve simulation results by assimilating real time sensor data into a simulation model. A data assimilation framework based on Sequential Monte Carlo (SMC) methods for wildfire spread simulation has been developed in previous work. This paper provides systematic analysis and measurement to quantify the effectiveness and robustness of the developed data assimilation method. Measurement metrics are used to evaluate the robustness of SMC methods in data assimilation for wildfire spread simulation. Sensitivity analysis is carried out to examine the influences of important parameters to the data assimilation results. This work of analysis and quantification provides information to assess the effectiveness of the data assimilation method and suggests guidelines to further improve the data assimilation method for wildfire spread simulation.

  • articleNo Access

    Equipment remaining useful life prediction oriented symbiotic simulation driven by real-time degradation data

    As an emerging simulation technology in the field of system modeling and simulation, the equipment symbiotic simulation has become research emphasis. In the field of equipment maintenance support, the outstanding problem of equipment remaining useful life (RUL) prediction is analyzed, i.e., the stable model parameters without self-evolution ability, which has become the primary factor that hinders self-adaptive prediction of equipment RUL. Combined with parallel systems theory, the equipment RUL prediction oriented symbiotic simulation framework is proposed on the basis of modeling analysis and Wiener state space model (SSM) is taken as the basic simulation model in the framework. Driven by the dynamic injected equipment degradation observation data, the model parameters are updated online by using expectation maximum (EM) algorithm and the data assimilation between simulation outputs and observation data is executed by using Kalman filter, so as to realize dynamic evolution of the simulation model. The simulation model evolution which makes the simulation outputs close to equipment real degradation state provides high fidelity model and data for predicting equipment RUL accurately. The framework is verified by the performance degradation data of a bearing. The simulation results show that the symbiotic simulation method can accurately simulate the equipment performance degradation process and the self-adaptive prediction of equipment RUL is realized on the basis of improving prediction accuracy, proving the feasibility and effectiveness of symbiotic simulation method.