Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • chapterFree Access

    A FRAMEWORK FOR DETERMINING OUTLYING MICROARRAY EXPERIMENTS

    Microarrays are high-throughput technologies whose data are known to be noisy. In this work, we propose a graph-based method which first identifies the extent to which a single microarray experiment is noisy and then applies an error function to clean individual expression levels. These two steps are unified within a framework based on a graph representation of a separate data set from some repository. We demonstrate the utility of our method by comparing our results against statistical methods by applying both techniques to simulated microarray data. Our results are encouraging and indicate one potential use of microarray data from past experiments.