Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Geometry equilibration of crystalline defects in quantum and atomistic descriptions

    We develop a rigorous framework for modeling the geometry equilibration of crystalline defects. We formulate the equilibration of crystal defects as a variational problem on a discrete energy space and establish qualitatively sharp far-field decay estimates for the equilibrium configuration. This work extends [V. Ehrlacher, C. Ortner and A. Shapeev, Analysis of boundary conditions for crystal defect atomistic simulations, Arch. Ration. Mech. Anal.222 (2016) 1217–1268] by admitting infinite-range interaction which in particular includes some quantum chemistry based interatomic interactions.

  • articleNo Access

    On 2-dimensional Dijkgraaf-Witten theory with defects

    In this paper, we provide a construction of a state-sum model for finite gauge-group Dijkgraaf-Witten theory on surfaces with codimension 1 defects. The construction requires not only that the triangulation be subordinate to the filtration, but flag-like: each simplex of the triangulation is either disjoint from the defect curve, or intersects it in a closed face. The construction allows internal degrees of freedom in the defect curves by introducing a second gauge-group from which edges of the curve are labeled in the state-sum construction. Edges incident with the defect, but not lying in it, have states lying in a set with commuting actions of the two gauge-groups. We determine the appropriate generalizations of the 2-cocycles specifying twistings of defect-free 2D Dijkgraaf-Witten theory. Examples arising by restriction of group 2-cocycles, and constructed from characters of the 2-dimensional gauge group are presented.

  • articleNo Access

    A general state-sum construction of 2-dimensional topological quantum field theories with defects

    We derive a general state sum construction for 2D topological quantum field theories (TQFTs) with source defects on oriented curves, extending the state-sum construction from special symmetric Frobenius algebra for 2D TQFTs without defects (cf. Lauda and Pfeiffer [State-sum construction of two-dimensional open-closed topological quantum field theories, J. Knot Theory Ramifications16 (2007) 1121–1163, doi: 10.1142/S0218216507005725]). From the extended Pachner moves (Crane and Yetter [Moves on filtered PL manifolds and stratified PL spaces, arXiv:1404.3142]), we derive equations that we subsequently translate into string diagrams so that we can easily observe their properties. As in Dougherty, Park and Yetter [On 2-dimensional Dijkgraaf–Witten theory with defects, to appear in J. Knots Theory Ramifications], we require that triangulations be flaglike, meaning that each simplex of the triangulation is either disjoint from the defect curve, or intersects it in a closed face, and that the extended Pachner moves preserve flaglikeness.

  • articleNo Access

    Dijkgraaf–Witten type invariants of Seifert surfaces in 3-manifolds

    We introduce defects, with internal gauge symmetries, on a knot and Seifert surface to a knot into the combinatorial construction of finite gauge-group Dijkgraaf–Witten theory. The appropriate initial data for the construction are certain three object categories, with coefficients satisfying a partially degenerate cocycle condition.