Please login to be able to save your searches and receive alerts for new content matching your search criteria.
We develop a rigorous framework for modeling the geometry equilibration of crystalline defects. We formulate the equilibration of crystal defects as a variational problem on a discrete energy space and establish qualitatively sharp far-field decay estimates for the equilibrium configuration. This work extends [V. Ehrlacher, C. Ortner and A. Shapeev, Analysis of boundary conditions for crystal defect atomistic simulations, Arch. Ration. Mech. Anal.222 (2016) 1217–1268] by admitting infinite-range interaction which in particular includes some quantum chemistry based interatomic interactions.
In this paper, we provide a construction of a state-sum model for finite gauge-group Dijkgraaf-Witten theory on surfaces with codimension 1 defects. The construction requires not only that the triangulation be subordinate to the filtration, but flag-like: each simplex of the triangulation is either disjoint from the defect curve, or intersects it in a closed face. The construction allows internal degrees of freedom in the defect curves by introducing a second gauge-group from which edges of the curve are labeled in the state-sum construction. Edges incident with the defect, but not lying in it, have states lying in a set with commuting actions of the two gauge-groups. We determine the appropriate generalizations of the 2-cocycles specifying twistings of defect-free 2D Dijkgraaf-Witten theory. Examples arising by restriction of group 2-cocycles, and constructed from characters of the 2-dimensional gauge group are presented.
We derive a general state sum construction for 2D topological quantum field theories (TQFTs) with source defects on oriented curves, extending the state-sum construction from special symmetric Frobenius algebra for 2D TQFTs without defects (cf. Lauda and Pfeiffer [State-sum construction of two-dimensional open-closed topological quantum field theories, J. Knot Theory Ramifications16 (2007) 1121–1163, doi: 10.1142/S0218216507005725]). From the extended Pachner moves (Crane and Yetter [Moves on filtered PL manifolds and stratified PL spaces, arXiv:1404.3142]), we derive equations that we subsequently translate into string diagrams so that we can easily observe their properties. As in Dougherty, Park and Yetter [On 2-dimensional Dijkgraaf–Witten theory with defects, to appear in J. Knots Theory Ramifications], we require that triangulations be flaglike, meaning that each simplex of the triangulation is either disjoint from the defect curve, or intersects it in a closed face, and that the extended Pachner moves preserve flaglikeness.
We introduce defects, with internal gauge symmetries, on a knot and Seifert surface to a knot into the combinatorial construction of finite gauge-group Dijkgraaf–Witten theory. The appropriate initial data for the construction are certain three object categories, with coefficients satisfying a partially degenerate cocycle condition.