Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Vibration analysis of defective graphene based on the molecular structural mechanics method

    A molecular structural mechanics method has been implemented to investigate the vibrational characteristics of single-layer graphene (SLG) with defects. By adopting the lumped mass unit to replace carbon atoms, and the beam element with circular cross-section to mimic C–C covalent bonds, SLG is modeled as a space framework. The simulation results show that the chirality almost has no effect on the natural frequency and the vibration mode of SLG, while boundary conditions have great influences. The influences of defects with different number and location on the natural frequencies are also studied. It is concluded that vibration mode is insensitive to the vacancy defect, small hole and short flaw, but large holes and long flaws can affect the vibration characteristics. So the graphene sheet even with small defect effects might be selected as the nanosensor material as well as pristine graphene. The conclusions in this paper may provide some references for the design of nanosensor.