Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    STRESS ANALYSES OF COMPOSITE LAMINATE WITH DELAMINATION USING X-FEM

    The extended finite element method (X-FEM) is applied to the stress analysis of composite laminates having interlaminar planar delamination. In X-FEM analysis, the geometry of such delaminations can be modeled independent of the finite elements. The domain form of the contour integral can be used to compute the energy release rate in conjunction with X-FEM. As numerical examples, three-dimensional analyses for DCB and ENF test specimens were performed by X-FEM with various enrichment nodes, and the obtained results were examined. In addition, a model of the no-friction-contact condition by X-FEM was proposed and applied to ENF test analysis. Moreover, eigenvalue buckling analyses of a CFRP plate with delamination were performed by X-FEM as a practical example related to Compression After Impact (CAI) problems of composite materials. The numerical results show that X-FEM is an effective method for analyzing stress in composite laminates with delamination.