Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Parasitic Effects on Memristor Dynamics

    In this paper, we show that parasitic elements have a significant effect on the dynamics of memristor circuits. We first show that certain 2-terminal elements such as memristors, memcapacitors, and meminductors can be used as nonvolatile memories, if the principle of conservation of state variables hold by open-circuiting, or short-circuiting, their terminals. We also show that a passive memristor with a strictly-increasing constitutive relation will eventually lose its stored flux when we switch off the power if there is a parasitic capacitance across the memristor. Similarly, a memcapacitor (resp., meminductor) with a positive memcapacitance (resp., meminductance) will eventually lose their stored physical states when we switch off the power, if it is connected to a parasitic resistance. We then show that the discontinuous jump that circuit engineers assumed to occur at impasse points of memristor circuits contradicts the principles of conservation of charge and flux at the time of the discontinuous jump. A parasitic element can be used to break an impasse point, resulting in the emergence of a continuous oscillation in the circuit. We also define a distance, a diameter, and a dimension, for each circuit element in order to measure the complexity order of the parasitic elements. They can be used to find higher-order parasitic elements which can break impasse points. Furthermore, we derived a memristor-based Chua’s circuit from a three-element circuit containing a memristor by connecting two parasitic memcapacitances to break the impasse points. We finally show that a higher-order parasitic element can be used for breaking the impasse points on two-dimensional and three-dimensional constrained spaces.

  • articleNo Access

    Hausdorff–Lebesgue Dimension of Attractors

    Definitions of Hausdorff–Lebesgue measure and dimension are introduced. Combination of Hausdorff and Lebesgue ideas are used. Methods for upper and lower estimations of attractor dimensions are developed.

  • articleNo Access

    THE CONNECTION BETWEEN THE ORDERS OF p-ADIC CALCULUS AND THE DIMENSIONS OF THE WEIERSTRASS TYPE FUNCTION IN LOCAL FIELDS

    Fractals01 Sep 2007

    This paper investigates the Weierstrass type function in local fields whose graph is a chaotic repelling set of a discrete dynamical system, and proves that their exists a linear connection between the orders of its p-adic calculus and the dimensions of the corresponding graphs.

  • articleNo Access

    INTERVALLIC SCALING IN THE BACH CELLO SUITES

    Fractals01 Dec 2009

    The cello suites of Johann Sebastian Bach exhibit several types of power-law scaling, the best examples of which can be considered fractal in nature. This article examines scaling with respect to the characteristics of melodic interval and its derivative, melodic moment. A new and effective method for pitch-related analysis is described and then applied to a selection of the 36 pieces that comprise the six cello suites.

  • articleNo Access

    FRACTAL DIMENSION OF THE DROSOPHILA CIRCADIAN CLOCK

    Fractals01 Dec 2011

    Fractal geometry can adequately represent many complex and irregular objects in nature. The fractal dimension is typically computed by the box-counting procedure. Here I compute the box-counting and the Kaplan-Yorke dimensions of the 14-dimensional models of the Drosophila circadian clock. Clockwork Orange (CWO) is transcriptional repressor of direct target genes that appears to play a key role in controlling the dynamics of the clock. The findings identify these models as strange attractors and highlight the complexity of the time-keeping actions of CWO in light-day cycles. These fractals are high-dimensional counterexamples of the Kaplan-Yorke conjecture that uses the spectrum of the Lyapunov exponents.

  • articleNo Access

    INTERSECTIONS OF CERTAIN DELETED DIGITS SETS

    Fractals01 Mar 2012

    We consider some properties of the intersection of deleted digits Cantor sets with their translates. We investigate conditions on the set of digits such that, for any t between zero and the dimension of the deleted digits Cantor set itself, the set of translations such that the intersection has that Hausdorff dimension equal to t is dense in the set F of translations such that the intersection is non-empty. We make some simple observations regarding properties of the set F, in particular, we characterize when F is an interval, in terms of conditions on the digit set.

  • articleNo Access

    HAUSDORFF DIMENSION OF A FAMILY OF NETWORKS

    Fractals01 Jan 2023

    For a family of networks {Gn}n1, we define the Hausdorff dimension of {Gn}n1 inspired by the Frostman’s characteristics of potential for Hausdorff dimension of fractals on Euclidean spaces. We prove that our Hausdorff dimension of the touching networks is logm/logN. Our definition is quite different from the fractal dimension defined for real-world networks.

  • articleNo Access

    HAUSDORFF DIMENSION OF A CLASS OF COLORED SUBSTITUTION NETWORKS

    Fractals11 Dec 2024

    In 2023, Xi et al. introduced the Hausdorff dimension of a family of networks which inspired by the potential theoretic methods in fractal geometry. In this paper, we will construct a class of colored substitution networks and obtain its Hausdorff dimension using the self-similarity.

  • chapterNo Access

    Fractal based curves in musical creativity: A critical annotation

    Chaos Theory01 May 2011

    In this article we examine fractal curves and synthesis algorithms in musical composition and research. First we trace the evolution of different approaches for the use of fractals in music since the 80's by a literature review. Furthermore, we review representative fractal algorithms and platforms that implement them. Properties such as self-similarity (pink noise), correlation, memory (related to the notion of Brownian motion) or non correlation at multiple levels (white noise), can be used to develop hierarchy of criteria for analyzing different layers of musical structure. L-systems can be applied in the modelling of melody in different musical cultures as well as in the investigation of musical perception principles. Finally, we propose a critical investigation approach for the use of artificial or natural fractal curves in systematic musicology.