Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Coupled effect of grain boundary sliding and dislocation emission on fracture toughness of nanocrystalline materials

    This paper establishes a theoretical model to explore the coupled effect of grain boundary (GB) sliding deformation and crack tip dislocation emission on the critical stress intensity factor (SIF) for crack growth in ultrafine-grained and nanocrystalline materials (NCMs). The model postulates that the stress concentration near a crack tip initiates GB sliding. It is found that GB sliding leads to the formation of wedge disclination dipole at the triple junctions of grain boundaries. Under the external load and stress fields produced by wedge disclinations, dislocations are emitted from crack tips but will stop at the opposite GBs. The influence of the wedge disclination dipole and the dislocation emitted from crack tip on the critical SIF for crack growth is investigated. The model prediction shows that the critical SIF varies with the decrement of grain size, and that there is a critical grain size corresponding to a minimum value of SIF. Compared with the pure brittle fracture in NCMs at the grain sizes of tens of nanometers, the combined deformation mechanisms can bring an increase of the critical SIF for crack growth.

  • articleNo Access

    Interaction problems between cracks and crystal defects in constrained Cosserat elasticity

    In this work, interaction problems between a finite-length crack with plane and antiplane crystal defects in the context of couple-stress elasticity are presented. Two alternative yet equivalent approaches for the formulation of crack problems are discussed based on the distributed dislocation technique. To this aim, the stress fields of climb and screw dislocation dipoles are derived within couple-stress theory and new ‘constrained’ rotational defects are introduced to satisfy the boundary conditions of the opening mode problem. Eventually, all interaction problems are described by single or systems of singular integral equations that are solved numerically using appropriate collocation techniques. The obtained results aim to highlight the deviation from classical elasticity solutions and underline the differences in interactions of cracks with single dislocations and dislocation dipoles. In general, it is concluded that the cracked body behaves in a more rigid way when couple-stresses are considered. Also, the stress level is significantly higher than the classical elasticity prediction. Moreover, the configurational forces acting on the defects are evaluated and their dependence on the characteristic material length of couple-stress theory and the distance between the defect and the crack-tip is discussed. This investigation reveals either a strengthening or a weakening effect in the opening mode problem while in the antiplane mode a strengthening effect is always obtained.