Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Load balancing, which redistributes dynamic workloads across computing nodes within cloud to improve resource utilization, is one of the main challenges in cloud computing system. Most existing rule-based load balancing algorithms failed to effectively fuse load data of multi-class system resources. The strategies they used for balancing loads were far from optimum since these methods were essentially performed in a combined way according to load state. In this work, a fuzzy clustering method with feature weight preferences is presented to overcome the load balancing problem for multi-class system resources and it can achieve an optimal balancing solution by load data fusion. Feature weight preferences are put forward to establish the relationship between prior knowledge of specific cloud scenario and load balancing procedure. Extensive experiments demonstrate that the proposed method can effectively balance loads consisting of multi-class system resources.