Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Fuzzy Clustering with Feature Weight Preferences for Load Balancing in Cloud

    Load balancing, which redistributes dynamic workloads across computing nodes within cloud to improve resource utilization, is one of the main challenges in cloud computing system. Most existing rule-based load balancing algorithms failed to effectively fuse load data of multi-class system resources. The strategies they used for balancing loads were far from optimum since these methods were essentially performed in a combined way according to load state. In this work, a fuzzy clustering method with feature weight preferences is presented to overcome the load balancing problem for multi-class system resources and it can achieve an optimal balancing solution by load data fusion. Feature weight preferences are put forward to establish the relationship between prior knowledge of specific cloud scenario and load balancing procedure. Extensive experiments demonstrate that the proposed method can effectively balance loads consisting of multi-class system resources.