Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Cross-connection structure of concordant semigroups

    Cross-connection theory provides the construction of a semigroup from its ideal structure using small categories. A concordant semigroup is an idempotent-connected abundant semigroup whose idempotents generate a regular subsemigroup. We characterize the categories arising from the generalized Green relations in the concordant semigroup as consistent categories and describe their interrelationship using cross-connections. Conversely, given a pair of cross-connected consistent categories, we build a concordant semigroup. We use this correspondence to prove a category equivalence between the category of concordant semigroups and the category of cross-connected consistent categories. In the process, we illustrate how our construction is a generalization of the cross-connection analysis of regular semigroups. We also identify the inductive cancellative category associated with a pair of cross-connected consistent categories.