Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Eco-Conscious Silver Nanoparticles via Quassia indica: Characterization and Multifaceted Applications

    Nano LIFE28 Feb 2024

    This research work explores the green synthesis of silver nanoparticles using Quassia indica (QI-Ag NPs), a natural plant extract, as a stabilizing and reducing agent. The synthesized QI-Ag NPs were characterized using various analytical techniques, including UV-Visible spectroscopy, X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), Transmission Electron Microscopy (HR-TEM) and Selected Area Electron Diffraction (SAED). The UV-Visible analysis revealed a characteristic peak at 430 nm, indicating the successful formation of AgNPs. XRD analysis unveiled the crystalline nature of the nanoparticles, with four distinctive peaks corresponding to the silver crystallographic planes. SEM and EDX provided insights into the morphology and chemical composition of the QI-AgNPs. Moreover, TEM and SAED elucidated the structural attributes and crystallinity of the nanoparticles. The Ag NPs exhibited a spherical structure and crystalline nature, as supported by both SAED and XRD findings. The zeta potential of QI-Ag NPs exhibited a value of −24.2 mV. The synthesized QI-Ag NPs were evaluated for their photocatalytic potential, demonstrating a remarkable 97% degradation of Crystal Violet dye. Furthermore, comprehensive studies encompassing antioxidant, antimicrobial and cytotoxicity assessments were conducted, showcasing the multifaceted applications of these nanoparticles. This research underscores the promising potential of Q. indica-mediated silver nanoparticles as environmentally benign and versatile nanomaterials.