Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Objectives: To model cortical connections in order to characterize their oscillatory behavior and role in the generation of spontaneous electroencephalogram (EEG). Methods: We studied averaged responses to single pulse electrical stimulation (SPES) from the non-epileptogenic hemisphere of five patients assessed with intracranial EEG who became seizure free after contralateral temporal lobectomy. Second-order control system equations were modified to characterize the systems generating a given response. SPES responses were modeled as responses to a unit step input. EEG power spectrum was calculated on the 20s preceding SPES. Results: 121 channels showed responses to 32 stimulation sites. A single system could model the response in 41.3% and two systems were required in 58.7%. Peaks in the frequency response of the models tended to occur within the frequency range of most activity on the spontaneous EEG. Discrepancies were noted between activity predicted by models and activity recorded in the spontaneous EEG. These discrepancies could be explained by the existence of alpha rhythm or interictal epileptiform discharges. Conclusions: Cortical interactions shown by SPES can be described as control systems which can predict cortical oscillatory behavior. The method is unique as it describes connectivity as well as dynamic interactions.
The electroencephalogram (EEG) signal analysis is a valuable tool in the evaluation of neurological disorders, which is commonly used for the diagnosis of epileptic seizures. This paper presents a novel automatic EEG signal classification method for epileptic seizure detection. The proposed method first employs a continuous wavelet transform (CWT) method for obtaining the time-frequency images (TFI) of EEG signals. The processed EEG signals are then decomposed into five sub-band frequency components of clinical interest since these sub-band frequency components indicate much better discriminative characteristics. Both Gaussian Mixture Model (GMM) features and Gray Level Co-occurrence Matrix (GLCM) descriptors are then extracted from these sub-band TFI. Additionally, in order to improve classification accuracy, a compact feature selection method by combining the ReliefF and the support vector machine-based recursive feature elimination (RFE-SVM) algorithm is adopted to select the most discriminative feature subset, which is an input to the SVM with the radial basis function (RBF) for classifying epileptic seizure EEG signals. The experimental results from a publicly available benchmark database demonstrate that the proposed approach provides better classification accuracy than the recently proposed methods in the literature, indicating the effectiveness of the proposed method in the detection of epileptic seizures.
Automatic seizure detection is extremely important in the monitoring and diagnosis of epilepsy. The paper presents a novel method based on dictionary pair learning (DPL) for seizure detection in the long-term intracranial electroencephalogram (EEG) recordings. First, for the EEG data, wavelet filtering and differential filtering are applied, and the kernel function is performed to make the signal linearly separable. In DPL, the synthesis dictionary and analysis dictionary are learned jointly from original training samples with alternating minimization method, and sparse coefficients are obtained by using of linear projection instead of costly l0-norm or l1-norm optimization. At last, the reconstructed residuals associated with seizure and nonseizure sub-dictionary pairs are calculated as the decision values, and the postprocessing is performed for improving the recognition rate and reducing the false detection rate of the system. A total of 530h from 20 patients with 81 seizures were used to evaluate the system. Our proposed method has achieved an average segment-based sensitivity of 93.39%, specificity of 98.51%, and event-based sensitivity of 96.36% with false detection rate of 0.236/h.
We adopted a fusion approach that combines features from simultaneously recorded electroencephalogram (EEG) and magnetoencephalogram (MEG) signals to improve classification performances in motor imagery-based brain–computer interfaces (BCIs). We applied our approach to a group of 15 healthy subjects and found a significant classification performance enhancement as compared to standard single-modality approaches in the alpha and beta bands. Taken together, our findings demonstrate the advantage of considering multimodal approaches as complementary tools for improving the impact of noninvasive BCIs.
Functional brain network (FBN) has become very popular to analyze the interaction between cortical regions in the last decade. But researchers always spend a long time to search the best way to compute FBN for their specific studies. The purpose of this study is to detect the proficiency of operators during their mineral grinding process controlling based on FBN. To save the search time, a novel semi-data-driven method of computing functional brain connection based on stacked autoencoder (BCSAE) is proposed in this paper. This method uses stacked autoencoder (SAE) to encode the multi-channel EEG data into codes and then computes the dissimilarity between the codes from every pair of electrodes to build FBN. The highlight of this method is that the SAE has a multi-layered structure and is semi-supervised, which means it can dig deeper information and generate better features. Then an experiment was performed, the EEG of the operators were collected while they were operating and analyzed to detect their proficiency. The results show that the BCSAE method generated more number of separable features with less redundancy, and the average accuracy of classification (96.18%) is higher than that of the control methods: PLV (92.19%) and PLI (78.39%).
The development of suitable EEG-based emotion recognition systems has become a main target in the last decades for Brain Computer Interface applications (BCI). However, there are scarce algorithms and procedures for real-time classification of emotions. The present study aims to investigate the feasibility of real-time emotion recognition implementation by the selection of parameters such as the appropriate time window segmentation and target bandwidths and cortical regions. We recorded the EEG-neural activity of 24 participants while they were looking and listening to an audiovisual database composed of positive and negative emotional video clips. We tested 12 different temporal window sizes, 6 ranges of frequency bands and 60 electrodes located along the entire scalp. Our results showed a correct classification of 86.96% for positive stimuli. The correct classification for negative stimuli was a little bit less (80.88%). The best time window size, from the tested 1s to 12s segments, was 12s. Although more studies are still needed, these preliminary results provide a reliable way to develop accurate EEG-based emotion classification.
Modulation of sensorimotor rhythm (SMR) power, a rhythmic brain oscillation physiologically linked to motor imagery, is a popular Brain–Machine Interface (BMI) paradigm, but its interplay with slower cortical rhythms, also involved in movement preparation and cognitive processing, is not entirely understood. In this study, we evaluated the changes in phase and power of slow cortical activity in delta and theta bands, during a motor imagery task controlled by an SMR-based BMI system. In Experiment I, EEG of 20 right-handed healthy volunteers was recorded performing a motor-imagery task using an SMR-based BMI controlling a visual animation, and during task-free intervals. In Experiment II, 10 subjects were evaluated along five daily sessions, while BMI-controlling same visual animation, a buzzer, and a robotic hand exoskeleton. In both experiments, feedback received from the controlled device was proportional to SMR power (11–14Hz) detected by a real-time EEG-based system. Synchronization of slow EEG frequencies along the trials was evaluated using inter-trial-phase coherence (ITPC). Results: cortical oscillations of EEG in delta and theta frequencies synchronized at the onset and at the end of both active and task-free trials; ITPC was significantly modulated by feedback sensory modality received during the tasks; and ITPC synchronization progressively increased along the training. These findings suggest that phase-locking of slow rhythms and resetting by sensory afferences might be a functionally relevant mechanism in cortical control of motor function. We propose that analysis of phase synchronization of slow cortical rhythms might also improve identification of temporal edges in BMI tasks and might help to develop physiological markers for identification of context task switching and practice-related changes in brain function, with potentially important implications for design and monitoring of motor imagery-based BMI systems, an emerging tool in neurorehabilitation of stroke.
Driver fatigue is an important contributor to road accidents, and driver fatigue detection has attracted a great deal of attention on account of its significant importance. Numerous methods have been proposed to fulfill this challenging task, though, the characterization of the fatigue mechanism still, to a large extent, remains to be investigated. To address this problem, we, in this work, develop a novel Multiplex Limited Penetrable Horizontal Visibility Graph (Multiplex LPHVG) method, which allows in not only detecting fatigue driving but also probing into the brain fatigue behavior. Importantly, we use the method to construct brain networks from EEG signals recorded from different subjects performing simulated driving tasks under alert and fatigue driving states. We then employ clustering coefficient, global efficiency and characteristic path length to characterize the topological structure of the networks generated from different brain states. In addition, we combine average edge overlap with the network measures to distinguish alert and mental fatigue states. The high-accurate classification results clearly demonstrate and validate the efficacy of our multiplex LPHVG method for the fatigue detection from EEG signals. Furthermore, our findings show a significant increase of the clustering coefficient as the brain evolves from alert state to mental fatigue state, which yields novel insights into the brain behavior associated with fatigue driving.
Numerous nonepileptic paroxysmal events, such as syncope and psychogenic nonepileptic seizures, may imitate seizures and impede diagnosis. Misdiagnosis can lead to mistreatment, affecting patients’ lives considerably. Electroencephalography is commonly used for diagnosing epilepsy. Although on electroencephalograms (EEGs), epileptiform discharges (ED) specifically indicate epilepsy, only approximately 50% of patients with epilepsy have ED in their first EEG. In this study, we developed a deep convolutional neural network (ConvNet)-based classifier to distinguish EEG between patients with epilepsy without ED and controls. Overall, 25 patients with epilepsy without ED in their EEGs and 25 age-matched patients with Tourette syndrome or syncope were enrolled. Their EEGs were classified using the deep ConvNet. When the EEG data without overlapping were used, the accuracy, sensitivity, and specificity were 65.00%, 48.00%, and 82.00%, respectively. The performance measures improved when the input EEG data were augmented through overlapping. With 95% EEG data overlapping, the accuracy, sensitivity, and specificity increased to 80.00%, 70.00%, and 90.00%, respectively. The proposed method could be regarded as a pilot study to demonstrate a proof of concept of a potential diagnostic value of deep ConvNet in patients with epilepsy without ED. Further studies are needed to assist neurologists in distinguishing nonepileptic paroxysmal events from epilepsy.
Hypoxic-ischemic (HI) studies in preterms lack reliable prognostic biomarkers for diagnostic tests of HI encephalopathy (HIE). Our group’s observations from in utero fetal sheep models suggest that potential biomarkers of HIE in the form of developing HI micro-scale epileptiform transients emerge along suppressed EEG/ECoG background during a latent phase of 6–7h post-insult. However, having to observe for the whole of the latent phase disqualifies any chance of clinical intervention. A precise automatic identification of these transients can help for a well-timed diagnosis of the HIE and to stop the spread of the injury before it becomes irreversible. This paper reports fusion of Reverse-Biorthogonal Wavelets with Type-1 Fuzzy classifiers, for the accurate real-time automatic identification and quantification of high-frequency HI spike transients in the latent phase, tested over seven in utero preterm sheep. Considerable high performance of 99.78 ± 0.10% was obtained from the Rbio-Wavelet Type-1 Fuzzy classifier for automatic identification of HI spikes tested over 42h of high-resolution recordings (sampling-freq:1024Hz). Data from post-insult automatic time-localization of high-frequency HI spikes reveals a promising trend in the average rate of the HI spikes, even in the animals with shorter occlusion periods, which highlights considerable higher number of transients within the first 2h post-insult.
Fatigue is one problem with driving as it can lead to difficulties with sustaining attention, behavioral lapses, and a tendency to ignore vital information or operations. In this research, we explore multimodal physiological phenomena in response to driving fatigue through simultaneous functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG) recordings with the aim of investigating the relationships between hemodynamic and electrical features and driving performance. Sixteen subjects participated in an event-related lane-deviation driving task while measuring their brain dynamics through fNIRS and EEGs. Three performance groups, classified as Optimal, Suboptimal, and Poor, were defined for comparison. From our analysis, we find that tonic variations occur before a deviation, and phasic variations occur afterward. The tonic results show an increased concentration of oxygenated hemoglobin (HbO2) and power changes in the EEG theta, alpha, and beta bands. Both dynamics are significantly correlated with deteriorated driving performance. The phasic EEG results demonstrate event-related desynchronization associated with the onset of steering vehicle in all power bands. The concentration of phasic HbO2 decreased as performance worsened. Further, the negative correlations between tonic EEG delta and alpha power and HbO2 oscillations suggest that activations in HbO2 are related to mental fatigue. In summary, combined hemodynamic and electrodynamic activities can provide complete knowledge of the brain’s responses as evidence of state changes during fatigue driving.
Epileptic seizures arise from synchronous firing of multiple spatially separated neural masses; therefore, many synchrony measures are used for seizure detection and characterization. However, synchrony measures reflect only the overall interaction strength among populations of neurons but cannot reveal the coupling strengths among individual populations, which is more important for seizure control. The concepts of reachability and reachable cluster were proposed to denote the coupling strengths of a set of neural masses. Here, we describe a seizure control method based on coupling strengths using combination convolutional neural network (CCNN) modeling. The neurophysiologically based neural mass model (NMM), which can bridge signal processing and neurophysiology, was used to simulate the proposed controller. Although the adjacency matrix and reachability matrix could not be identified perfectly, the vast majority of adjacency values were identified, reaching 95.64% using the CCNN with an optimal threshold. For cases of discrete and continuous coupling strengths, the proposed controller maintained the average reachable cluster strengths at about 0.1, indicating effective seizure control.
In this study, we investigated the dynamic properties of oscillatory activities in the scalp electro-encephalographs (EEGs) of 20 participants involved in a novel dynamic manipulating task using a physical interface and a virtual feedback. The complexity of such a task a rises from the unexpected relationship between the magnitude of the motion and the feedback. The characterization of complex patterns arising from EEG is an important problem in identifying different mental intentions. We proposed a scaling analysis of phase fluctuation in the scalp EEG to discriminate the network states related to different EEG patterns, which correspond to manipulating the task with right or left movement intention. These intentions are generated while the participant is engaged in such a complex task. The phase characterization method was used to calculate the instantaneous phase from the operational EEG. Then, functional brain networks (FBNs) of 20 subjects based on the task-related EEG were constructed by phase synchronization. The degree features representing the structures and scaling components of brain networks are sensitive to the EEG patterns with left or right motor intention. The correlation between features and mental intentions was investigated by discriminant analysis. For 20 subjects, the average accuracy of state detection is 0.8541±0.0398, and the average mean-squared error (MSE) is 0.6036±0.1226. The brain state depicted by the results is related to high awareness, the phase characterization is of the effectiveness in EEG processing and FBN construction and the difference of control intentions can be explored by the phase characterization method. This finding may be relevant to understanding some neuronal mechanisms underlying the attention and some applications of closed-loop control for the safety operation of tools.
Aim of this study was to explore the EEG functional connectivity in amnesic mild cognitive impairments (MCI) subjects with multidomain impairment in order to characterize the Default Mode Network (DMN) in converted MCI (cMCI), which converted to Alzheimer’s disease (AD), compared to stable MCI (sMCI) subjects. A total of 59 MCI subjects were recruited and divided -after appropriate follow-up- into cMCI or sMCI. They were further divided in MCI with linguistic domain (LD) impairment and in MCI with executive domain (ED) impairment. Small World (SW) index was measured as index of balance between integration and segregation brain processes. SW, computed restricting to nodes of DMN regions for all frequency bands, evaluated how they differ between MCI subgroups assessed through clinical and neuropsychological four-years follow-up. In addition, SW evaluated how this pattern differs between MCI with LD and MCI with ED. Results showed that SW index significantly decreased in gamma band in cMCI compared to sMCI. In cMCI with LD impairment, the SW index significantly decreased in delta band, while in cMCI with ED impairment the SW index decreased in delta and gamma bands and increased in alpha1 band. We propose that the DMN functional alterations in cognitive impairment could reflect an abnormal flow of brain information processing during resting state possibly associated to a status of pre-dementia.
Emotion estimation systems based on brain and physiological signals such as electro encephalography (EEG), blood-volume pressure (BVP), and galvanic skin response (GSR) are gaining special attention in recent years due to the possibilities they offer. The field of human–robot interactions (HRIs) could benefit from a broadened understanding of the brain and physiological emotion encoding, together with the use of lightweight software and cheap wearable devices, and thus improve the capabilities of robots to fully engage with the users emotional reactions. In this paper, a previously developed methodology for real-time emotion estimation aimed for its use in the field of HRI is tested under realistic circumstances using a self-generated database created using dynamically evoked emotions. Other state-of-the-art, real-time approaches address emotion estimation using constant stimuli to facilitate the analysis of the evoked responses, remaining far from real scenarios since emotions are dynamically evoked. The proposed approach studies the feasibility of the emotion estimation methodology previously developed, under an experimentation paradigm that imitates a more realistic scenario involving dynamically evoked emotions by using a dramatic film as the experimental paradigm. The emotion estimation methodology has proved to perform on real-time constraints while maintaining high accuracy on emotion estimation when using the self-produced dynamically evoked emotions multi-signal database.
The objective of this work was to study the impact of repetitive Transcranial Magnetic Stimulation (rTMS) on the EEG connectivity evaluated by indices based on graph theory, derived from Directed Transfer Function (DTF), in patients with major depressive disorder (MDD) or with bipolar disorder (BD). The results showed the importance of beta and gamma rhythms. The indices density, degree and clustering coefficient increased in MDD responders in beta and gamma bands after rTMS. Interestingly, the density and the degree changed in theta band in both groups of nonresponders (decreased in MDD nonresponders but increased in BD nonresponders). Moreover, both indices of integration (the characteristic path length and the global efficiency) as well as the clustering coefficient increased in BD nonresponders for gamma band. In BD responders, the activity increased in the frontal lobe, mainly in the left hemisphere, while in MDD responders in the central posterior part of brain. The fronto-posterior asymmetry decreased in both groups of responders in delta and beta bands. Changes in inter-hemispheric asymmetry were found only in BD nonresponders in all bands, except gamma band. Comparison between groups showed that the degree increased in delta band independently on disease (BD, MDD). These preliminary results showed that the DTF may be a useful marker allowing for evaluation of effectiveness of the rTMS therapy as well for group differentiation between MDD and BD considering separately groups of responders and nonresponders. However, further investigation should be performed over larger groups of patients to confirmed our findings.
The automatic seizure detection system can effectively help doctors to monitor and diagnose epilepsy thus reducing their workload. Many outstanding studies have given good results in the two-class seizure detection problems, but most of them are based on hand-wrought feature extraction. This study proposes an end-to-end automatic seizure detection system based on deep learning, which does not require heavy preprocessing on the EEG data or feature engineering. The fully convolutional network with three convolution blocks is first used to learn the expressive seizure characteristics from EEG data. Then these robust EEG features pertinent to seizures are presented as an input to the Nested Long Short-Term Memory (NLSTM) model to explore the inherent temporal dependencies in EEG signals. Lastly, the high-level features obtained from the NLSTM model are fed into the softmax layer to output predicted labels. The proposed method yields an accuracy range of 98.44–100% in 10 different experiments based on the Bonn University database. A larger EEG database is then used to evaluate the performance of the proposed method in real-life situations. The average sensitivity of 97.47%, specificity of 96.17%, and false detection rate of 0.487 per hour are yielded. For CHB–MIT Scalp EEG database, the proposed model also achieves a segment-level sensitivity of 94.07% with a false detection rate of 0.66 per hour. The excellent results obtained on three different EEG databases demonstrate that the proposed method has good robustness and generalization power under ideal and real-life conditions.
Understanding the neurophysiology of emotions, the neuronal structures involved in processing emotional information and the circuits by which they act, is key to designing applications in the field of affective neuroscience, to advance both new treatments and applications of brain–computer interactions. However, efforts have focused on developing computational models capable of emotion classification instead of on studying the neural substrates involved in the emotional process. In this context, we have carried out a study of cortical asymmetries and functional cortical connectivity based on the electroencephalographic signal of 24 subjects stimulated with videos of positive and negative emotional content to bring some light to the neurobiology behind emotional processes. Our results show opposite interhemispheric asymmetry patterns throughout the cortex for both emotional categories and specific connectivity patterns regarding each of the studied emotional categories. However, in general, the same key areas, such as the right hemisphere and more anterior cortical regions, presented higher levels of activity during the processing of both valence emotional categories. These results suggest a common neural pathway for processing positive and negative emotions, but with different activation patterns. These preliminary results are encouraging for elucidating the neuronal circuits of the emotional valence dimension.
Diagnosis of learning difficulties is a challenging goal. There are huge number of factors involved in the evaluation procedure that present high variance among the population with the same difficulty. Diagnosis is usually performed by scoring subjects according to results obtained in different neuropsychological (performance-based) tests specifically designed to this end. One of the most frequent disorders is developmental dyslexia (DD), a specific difficulty in the acquisition of reading skills not related to mental age or inadequate schooling. Its prevalence is estimated between 5% and 12% of the population. Traditional tests for DD diagnosis aim to measure different behavioral variables involved in the reading process. In this paper, we propose a diagnostic method not based on behavioral variables but on involuntary neurophysiological responses to different auditory stimuli. The experiments performed use electroencephalography (EEG) signals to analyze the temporal behavior and the spectral content of the signal acquired from each electrode to extract relevant (temporal and spectral) features. Moreover, the relationship of the features extracted among electrodes allows to infer a connectivity-like model showing brain areas that process auditory stimuli in a synchronized way. Then an anomaly detection system based on the reconstruction residuals of an autoencoder using these features has been proposed. Hence, classification is performed by the proposed system based on the differences in the resulting connectivity models that have demonstrated to be a useful tool for differential diagnosis of DD as well as a method to step towards gaining a better knowledge of the brain processes involved in DD. The results corroborate that nonspeech stimulus modulated at specific frequencies related to the sampling processes developed in the brain to capture rhymes, syllables and phonemes produces effects in specific frequency bands that differentiate between controls and DD subjects. The proposed method showed relatively high sensitivity above 0.6, and up to 0.9 in some of the experiments.
Covert attention has been repeatedly shown to impact on EEG responses after single and repeated practice sessions. Machine learning techniques are increasingly adopted to classify single-trial EEG responses thereby primarily relying on amplitude-based features instead of latency-based features. In this study, we investigated changes in EEG response signatures of nine healthy older subjects when performing 10 sessions of covert attention training. We show that, when we trained classifiers to distinguish recorded EEG patterns between the two experimental conditions (a target stimulus is “present” or “not present”), latency-based classifiers outperform the amplitude-based ones and that classification accuracy improved along with behavioral accuracy, providing supportive evidence of brain plasticity.