Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Online social media microblogs may be a valuable resource for timely identification of critical ad hoc health-related incidents or serious epidemic outbreaks. In this paper, we explore emotion classification of Twitter microblogs related to localized public health threats, and study whether the public mood can be effectively utilized in early discovery or alarming of such events. We analyse user tweets around recent incidents of Ebola, finding differences in the expression of emotions in tweets posted prior to and after the incidents have emerged. We also analyse differences in the nature of the tweets in the immediately affected area as compared to areas remote to the events. The results of this analysis suggest that emotions in social media microblogging data (from Twitter in particular) may be utilized effectively as a source of evidence for disease outbreak detection and monitoring.