Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Edge states at phase boundaries and their stability

    We analyze the effects of Robin-like boundary conditions on different quantum field theories of spin 0, 1/2 and 1 on manifolds with boundaries. In particular, we show that these conditions often lead to the appearance of edge states. These states play a significant role in physical phenomena like quantum Hall effect and topological insulators. We prove in a rigorous way the existence of spectral lower bounds on the kinetic term of different Hamiltonians, even in the case of Abelian gauge fields where it is a non-elliptic differential operator. This guarantees the stability and consistency of massive field theories with masses larger than the lower bound of the kinetic term. Moreover, we find an upper bound for the deepest edge state. In the case of Abelian gauge theories, we analyze a generalization of Robin boundary conditions. For Dirac fermions, we analyze the cases of Atiyah–Patodi–Singer and chiral bag boundary conditions. The explicit dependence of the bounds on the boundary conditions and the size of the system is derived under general assumptions.