Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

SEARCH GUIDE  Download Search Tip PDF File

  • chapterNo Access

    EXPLORING UNIVERSALITY OF FEW-BODY PHYSICS BASED ON ULTRACOLD ATOMS NEAR FESHBACH RESONANCES

    A universal characterization of interactions in few- and many-body quantum systems is often possible without detailed description of the interaction potential, and has become a defacto assumption for cold atom research. Universality in this context is defined as the validity to fully characterize the system in terms of two-body scattering length. We discuss universality in the following three contexts: closed-channel dominated Feshbach resonance, Efimov physics near Feshbach resonances, and corrections to the mean field energy of Bose-Einstein condensates with large scattering lengths. Novel experimental tools and strategies are discussed to study universality in ultracold atomic gases: dynamic control of interactions, run-away evaporative cooling in optical traps, and preparation of few-body systems in optical lattices.