Loading [MathJax]/jax/output/CommonHTML/jax.js
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    SIMPLICITY OF EXTREMAL EIGENVALUES OF THE KLEIN–GORDON EQUATION

    We consider the spectral problem associated with the Klein–Gordon equation for unbounded electric potentials such that the spectrum is contained in two disjoint real intervals related to positive and negative energies, respectively. If the two inner boundary points are eigenvalues, we show that these extremal eigenvalues are simple and possess strictly positive eigenfunctions. Examples of electric potentials satisfying these assumptions are given.

  • articleNo Access

    BOUNDS FOR THE EIGENVALUES OF THE FRACTIONAL LAPLACIAN

    In this article, we extend Pólya's legendary inequality for the Dirichlet Laplacian to the fractional Laplacian. Pólya's argument is revealed to be a powerful tool for proving such extensions on tiling domains. As in the Dirichlet Laplacian case, Pólya's inequality for the fractional Laplacian on any bounded domain is still an open problem. Moreover, we also investigate the equivalence of several related inequalites for bounded domains by using the convexity, the Lieb–Aizenman procedure (the Riesz iteration), and some transforms such as the Laplace transform, the Legendre transform, and the Weyl fractional transform.

  • articleNo Access

    Dirac operators with Lorentz scalar shell interactions

    This paper deals with the massive three-dimensional Dirac operator coupled with a Lorentz scalar shell interaction supported on a compact smooth surface. The rigorous definition of the operator involves suitable transmission conditions along the surface. After showing the self-adjointness of the resulting operator, we switch to the investigation of its spectral properties, in particular, to the existence and non-existence of eigenvalues. In the case of an attractive coupling, we study the eigenvalue asymptotics as the mass becomes large and show that the behavior of the individual eigenvalues and their total number are governed by an effective Schrödinger operator on the boundary with an external Yang–Mills potential and a curvature-induced potential.

  • articleNo Access

    Generalized eigenfunctions and scattering matrices for position-dependent quantum walks

    We study the spectral analysis and the scattering theory for time evolution operators of position-dependent quantum walks. Our main purpose of this paper is the construction of generalized eigenfunctions of the time evolution operator. Roughly speaking, the generalized eigenfunctions are not square summable but belong to -space on Z. Moreover, we derive a characterization of the set of generalized eigenfunctions in view of the time-harmonic scattering theory. Thus we show that the S-matrix associated with the quantum walk appears in the singularity expansion of generalized eigenfunctions.

  • articleNo Access

    Complex translation methods and its application to resonances for quantum walks

    In this paper, some properties of resonances for multi-dimensional quantum walks are studied. Resonances for quantum walks are defined as eigenvalues of complex translated time evolution operators in the pseudo momentum space. For some typical cases, we show some results of existence or nonexistence of resonances. One is a perturbation of an elastic scattering of a quantum walk which is an analogue of classical mechanics. Another one is a shape resonance model which is a perturbation of a quantum walk with a non-penetrable barrier.