Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Friction Damped Steel Moment-Resisting Frames Subjected to Long-Distance Earthquakes: Influence of Weld Fractures

    It has been generally accepted that steel moment-resisting frames behave in a ductile manner under seismic excitations. However, during the 1994 Northridge earthquake in California, weld fractures at the beam-to-column connections occurred in many steel buildings. Such brittle failures obviously precluded the traditional ductile-behaviour assumption and had a significant effect on the responses of steel moment-resisting frames. In this paper, the performance of a friction damping system for retrofitting steel moment-resisting frames was investigated under long-distance earthquakes. For this purpose, the 1985 Mexico City (SCT), the 1995 Bangkok, or the 1977 Romania ground motions, all scaled to a peak ground acceleration of 0.17g, were considered in this study. Responses of the building under the 1940 El Centro N-S component were also included for comparison. The results of the study show that a friction damping system can reduce the seismic responses significantly. The devices can also prevent the total collapse and joint failures of the building equipped with friction dampers, while the one without dampers would collapse, even under a peak ground acceleration of only 0.17g.