In this paper, image fusion method based on a new class of wavelet — non-separable wavelet with compactly supported, linear phase, orthogonal and dilation matrix
is presented. We first construct a non-separable wavelet filter bank. Using these filters, the images involved are decomposed into wavelet pyramids. Then the following fusion algorithm was proposed: for low-frequency part, the average value is selected for new pixel value, For the three high-frequency parts of each level, the standard deviation of each image patch over 3×3 window in the high-frequency sub-images is computed as activity measurement. If the standard deviation of the area 3×3 window is bigger than the standard deviation of the corresponding 3×3 window in the other high-frequency sub-image. The center pixel values of the area window that the weighted area energy is bigger are selected. Otherwise the weighted value of the pixel is computed. Then a new fused image is reconstructed. The performance of the method is evaluated using the entropy, cross-entropy, fusion symmetry, root mean square error and peak-to-peak signal-to-noise ratio. The experiment results show that the non-separable wavelet fusion method proposed in this paper is very close to the performance of the Haar separable wavelet fusion method.