Please login to be able to save your searches and receive alerts for new content matching your search criteria.
In this paper a family of hybrid methods with minimal phase-lag are developed for the numerical solution of periodic initial-value problems. The methods are of eighth algebraic order and have large intervals of periodicity. The efficiency of the new methods is presented by their application to the wave equation and to coupled differential equations of the Schrödinger type.
An embedded Runge–Kutta method with phase-lag of order infinity for the numerical integration of Schrödinger equation is developed in this paper. The methods of the embedded scheme have algebraic orders five and four. Theoretical and numerical results obtained for radial Schrödinger equation and for coupled differential equations show the efficiency of the new methods.
In this paper, a new approach for developing efficient Runge–Kutta–Nyström methods is introduced. This new approach is based on the requirement of annihilation of the phase-lag (i.e., the phase-lag is of order infinity) and on a modification of Runge–Kutta–Nyström methods. Based on this approach, a new modified Runge–Kutta–Nyström fourth algebraic order method is developed for the numerical solution of Schrödinger equation and related problems. The new method has phase-lag of order infinity and extended interval of periodicity. Numerical illustrations on the radial Schrödinger equation and related problems with oscillating solutions indicate that the new method is more efficient than older ones.
New explicit hybrid Numerov type methods are presented in this paper. These efficient methods are constructed using a new approach, where we do not need the use of the intermediate high accuracy interpolatory nodes, since only the Taylor expansion of the internal points is needed. The methods share sixth algebraic order at a cost of five stages per step while their phase-lag order is 14 and partly satisfy the dissipation order conditions. It has be seen that the property of phase-lag is more important than the nonempty interval in constructing numerical methods for the solution of Schrödinger equation and related problems.1–3 Numerical results over some well known problems in physics and mechanics indicate the superiority of the new methods.
In this paper, a new high algebraic order symmetric eight-step method is introduced. For this method, a direct formula for the computation of the phase-lag is given. Based on this formula, an eight-step symmetric method with minimal phase-lag is developed. The new method has better stability properties than the classical one. Numerical illustrations on the radial Schrödinger equation indicate that the new method is more efficient than older ones.
In this paper we describe procedures for the construction of efficient methods for the numerical solution of second order initial value problems (IVPs) with oscillating solutions. Based on the described procedures we develop two simple and efficient multistep methods for the solution of the above problems. The first method is exponentially-fitted and trigonometrically-fitted and the second has a minimal phase-lag. Both methods are symmetric. Numerical results obtained for several well known problems show the efficiency of the new methods when they are compared with known methods in the literature.
In this paper we present a family of explicit Runge–Kutta methods of 5th algebraic order, one of which has variable coefficients, for the efficient solution of problems with oscillating solutions. Emphasis is placed on the phase-lag property in order to show its importance with regards to problems with oscillating solutions. Basic theory of Runge–Kutta methods, phase-lag analysis and construction of the new methods are described. Numerical results obtained for known problems show the efficiency of the new methods when they are compared with known methods in the literature. Furthermore we note that the method with variable coefficients appears to have much higher accuracy, which gets close to double precision, when the product of the frequency with the step-length approaches certain values. These values are constant and independent of the problem solved and depend only on the method used and more specifically on the expressions used to achieve higher algebraic order.
We present a new explicit hybrid two step method for the solution of second order initial value problem. It costs only nine function evaluations per step and attains eighth algebraic order so it is the cheapest in the literature. Its coefficients are chosen to reduce amplification and phase errors. Thus the method is well suited for facing problems with oscillatory solutions. After implementing a MATLAB program, we proceed with numerical tests that justify our effort.
Using a new methodology for deriving hybrid Numerov-type schemes, we present new explicit methods for the solution of second order initial value problems with oscillating solutions. The new methods attain algebraic order eight at a cost of eight function evaluations per step which is the most economical in computational cost that can be found in the literature. The methods have high amplification and phase-lag order characteristics in order to suit to the solution of problems with oscillatory solutions. The numerical tests in a variety of problems justify our effort.
We present a new explicit Numerov-type method for the solution of second-order linear initial value problems with oscillating solutions. The new method attains algebraic order seven at a cost of six function evaluations per step. The method has the characteristic of zero dissipation and high phase-lag order making it suitable for the solution of problems with oscillatory solutions. The numerical tests in a variety of problems justify our effort.
A new general multistep predictor-corrector (PC) pair form is introduced for the numerical integration of second-order initial-value problems. Using this form, a new symmetric eight-step predictor-corrector method with minimal phase-lag and algebraic order ten is also constructed. The new method is based on the multistep symmetric method of Quinlan–Tremaine,1 with eight steps and 8th algebraic order and is constructed to solve numerically the radial time-independent Schrödinger equation. It can also be used to integrate related IVPs with oscillating solutions such as orbital problems. We compare the new method to some recently constructed optimized methods from the literature. We measure the efficiency of the methods and conclude that the new method with minimal phase-lag is the most efficient of all the compared methods and for all the problems solved.
A hybrid tenth algebraic order two-step method with vanished phase-lag and its first, second, third, fourth and fifth derivatives are obtained in this paper. We will investigate
It will be proved that the developed method is effective for the approximate solution of the Schrödinger equation and related periodical or oscillatory initial value or boundary value problems.
A two-step method is developed for computing eigenvalues and resonances of the radial Schrödinger equation. Numerical results obtained for the integration of the eigenvalue and the resonance problem for several potentials show that this new method is better than other similar methods.
A new hybrid eighth-algebraic-order two-step method with phase-lag of order ten is developed for computing elastic scattering phase shifts of the one-dimensional Schrödinger equation. Based on this new method and on the method developed recently by Simos we obtain a new variable-step procedure for the numerical integration of the Schrödinger equation. Numerical results obtained for the integration of the phase shift problem for the well known case of the Lenard–Jones potential show that this new method is better than other finite difference methods.
A family of new hybrid four-step tenth algebraic order methods with phase-lag of order fourteen is developed for accurate computations of the radial Schrödinger equation. Numerical results obtained for the integration of the phase shift problem for the well known case of the Lennard-Jones potential and for the numerical solution of the coupled equations arising from the Schrödinger equation show that these new methods are better than other finite difference methods.
Some two-step P-stable methods with phase-lag of order infinity are developed for the numerical integration of the radial Schrödinger equation. The methods are of O(h2) and O(h4) respectively. We produce, based on these methods and on a new local error estimate, a very simple variable step procedure. Extensive numerical testing indicates that these new methods are generally more accurate than other two-step methods with higher algebraic order.
In this paper a singly diagonally implicit Runge-Kutta-Nyström (RKN) method is developed for second-order ordinary differential equations with periodical solutions. The method has algebraic order four and phase-lag order eight at a cost of four function evaluations per step. This new method is more accurate when compared with current methods of similar type for the numerical integration of second-order differential equations with periodic solutions, using constant step size.