Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    EQUATIONS FOR formula

    We show that the log canonical bundle, κ, of formula is very ample, show the homogeneous coordinate ring is Koszul, and give a nice set of rank 4 quadratic generators for the homogeneous ideal: The embedding is equivariant for the symmetric group, and the image lies on many Segre embedded copies of ℙ1 × ⋯ × ℙn-3, permuted by the symmetric group. The homogeneous ideal of formula is the sum of the homogeneous ideals of these Segre embeddings.

  • articleNo Access

    Explicit equations from orbit reduction: One and two stages

    It is known that orbit reduction can be performed in one or two stages and it has been proven that the two processes are symplectically equivalent. In the context of orbit reduction by one stage, we shall write an expression for the reduced two-form in the general case and obtain the equations of motion derived from this theory. Then we shall develop the same process in the case in which the symmetry group has a normal subgroup to get the reduced symplectic form by two stages and the consequent orbit reduced equations. In both cases, we shall illustrate the method with three physical examples.