Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • chapterNo Access

    Time and Chance Happeneth to Them all: Mutation, Selection and Recombination

    Many multi-cellular organisms exhibit remarkably similar patterns of aging and mortality. Because this phenomenon appears to arise from the complex interaction of many genes, it has been a challenge to explain it quantitatively as a response to natural selection. We survey attempts by the author and his collaborators to build a framework for understanding how mutation, selection and recombination acting on many genes combine to shape the distribution of genotypes in a large population. A genotype drawn at random from the population at a given time is described by a Poisson random measure on the space of loci and its distribution is characterized by the associated intensity measure. The intensity measures evolve according to a continuous-time measure-valued dynamical system. We present general results on the existence and uniqueness of this dynamical system and how it arises as a limit of discrete generation systems. We also discuss existence of equilibria.