Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Equilibrium Strategies and Optimal Control for a Double-Ended Queue

    In this paper, we study a passenger–taxi matching queue system. The system is modeled as a birth-and-death process. Since the system is so complex, we mainly focus on numerical analysis. A centralized system and a decentralized one are considered. In the centralized system, the government sets thresholds for both passengers and taxis to maximize the social welfare. We analyze the performance measures of this model, discuss the range of two thresholds that ensures positive social welfare, and numerically give the upper bound of threshold. In the decentralized system, passengers and taxis determine whether to join the system or balk based on their individual utility functions. Further, we consider the government’s tax and subsidy to the taxi drivers. Numerical results show that the social welfare function in the centralized system is concave with respect to the thresholds and the government central planning benefits the society. In the decentralized system, no matter what the passenger and taxi arrival rates are, the social welfare is concave with respect to the taxi fare. Moreover, we analyze the effect of the arrival rates and the benefits of the tax and subsidy.