Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    PEDESTRIAN FLOW MODELS WITH SLOWDOWN INTERACTIONS

    In this paper, we introduce and study one-dimensional models for the behavior of pedestrians in a narrow street or corridor. We begin at the microscopic level by formulating a stochastic cellular automata model with explicit rules for pedestrians moving in two opposite directions. Coarse-grained mesoscopic and macroscopic analogs are derived leading to the coupled system of PDEs for the density of the pedestrian traffic. The obtained first-order system of conservation laws is only conditionally hyperbolic. We also derive higher-order nonlinear diffusive corrections resulting in a parabolic macroscopic PDE model. Numerical experiments comparing and contrasting the behavior of the microscopic stochastic model and the resulting coarse-grained PDEs for various parameter settings and initial conditions are performed. These numerical experiments demonstrate that the nonlinear diffusion is essential for reproducing the behavior of the stochastic system in the nonhyperbolic regime.

  • articleNo Access

    Exclusive queueing processes and their application to traffic systems

    Pedestrian queues like those observed at ticket counters or supermarket checkouts are usually described by classical queueing theory. However, models like the M/M/1 queue neglect the internal structure (density profile) of the queue by focussing on the system length as the only dynamical variable. This is different in the Exclusive Queueing Process (EQP) in which the queue is considered on a microscopic level. It is equivalent to a Totally Asymmetric Exclusion Process (TASEP) of varying length. The EQP has a surprisingly rich phase diagram with respect to the arrival probability α and the service probability β. The behavior on the phase transition line is much more complex than for the TASEP with a fixed system length. It is nonuniversal and depends strongly on the update procedure used. In this paper, we review the main properties of the EQP and its applications to pedestrian dynamics, vehicular traffic and biological systems. We also mention extensions of the EQP and some related models.