Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    MODAL ANALYSIS AND DAMPING MEASUREMENT OF THE HEAD ARM ASSEMBLY OF A SMALL FORM FACTOR HARD DISK DRIVE

    As non-traditional applications of hard disk drives (HDDs) emerge, the interest in the effects of shock and vibration on small form factor (SFF) drives has come into currency due to the increasingly hostile environments encountered in the usage of the portable computer as well as the application in consumer devices. In this paper, the dynamic characteristics of an SFF drive were investigated using both experimental and numerical techniques, including modal analysis and damping measurement of the head arm assembly (HAA) of the drive. A finite element (FE) model of the HAA was created to perform numerical analysis. The FE model was verified and modified according to numerical results and experimental results. It is found that numerical results of the HAA in it free state and those in its preloading state coincide well with those of experiments, and/or those by other researchers.