Please login to be able to save your searches and receive alerts for new content matching your search criteria.
This paper analyzes the interaction of high Rayleigh number flow with conjugate heat transfer. The two-relaxation time lattice Boltzmann is used as a turbulent buoyancy-driven flow solver whereas the implicit finite difference technique is applied as a heat transfer solver. An in-house numerical code is developed and successfully validated on typical CFD problems. The impact of the Biot number, heat diffusivity ratio and the Rayleigh number on turbulent fluid flow and heat transfer patterns is studied. It is revealed that the thermally-conductive walls of finite thickness reduce the heat transfer rate. The temperature of the cooled wall slightly depends on the value of the buoyancy force. The heat diffusivity ratio has a significant effect on thermal and flow behavior. The Biot number significantly affects the mean Nusselt number at the right solid–fluid interface whereas the mean Nusselt number at the left interface is almost insensible to the Biot number variation.
This paper provides an analysis of the numerical performance of a hybrid computational fluid dynamics (CFD) solver for 3D natural convection. We propose to use the lattice Boltzmann equations with the two-relaxation time approximation for the fluid flow, whereas thermodynamics is described by the macroscopic energy equation with the finite difference solution. An in-house parallel graphics processing unit (GPU) code is written in MATLAB. The execution time of every single step of the algorithm is studied. It is found that the explicit finite difference scheme is not as stable as the implicit one for high Rayleigh numbers. The most time-consuming steps are energy and collide, while stream, boundary conditions, and macroscopic parameters recovery are executed in no time, despite the grid size under consideration. GPU code is more than 30 times faster than a typical low-end central processing unit-based code. The proposed hybrid model can be used for real-time simulation of physical systems under laminar flow behavior and on mid-range segment GPUs.