Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleOpen Access

    AN EFFICIENT APPROACH FOR SOLVING FRACTIONAL VARIABLE ORDER REACTION SUB-DIFFUSION BASED ON HERMITE FORMULA

    Fractals11 Sep 2021

    Anomalous Reaction-Sub-diffusion equations play an important role transferred in a lot of our daily applications in our life, especially in applied chemistry. In the presented work, a modified type of these models is considered which is the Reaction-Sub-diffusion equation of variable order, the linear and nonlinear models and we will refer to it by VORSDE. An accurate technique depends on a mix of the finite difference methods (FDM) together with Hermite formula is introduced to study these important types of anomalous equations. Regarding the analysis of the stability for the mentioned, it is done using the variable Von-Neumann technique; also the convergent analysis is introduced. As a result of the previous steps, we derived a stability condition which will be held for many discretization schemes of the variable order derivative and some other parameters and we checked it numerically.