Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

Bestsellers

Linear Algebra and Optimization with Applications to Machine Learning
Linear Algebra and Optimization with Applications to Machine Learning

Volume I: Linear Algebra for Computer Vision, Robotics, and Machine Learning
by Jean Gallier and Jocelyn Quaintance
Linear Algebra and Optimization with Applications to Machine Learning
Linear Algebra and Optimization with Applications to Machine Learning

Volume II: Fundamentals of Optimization Theory with Applications to Machine Learning
by Jean Gallier and Jocelyn Quaintance

 

  • articleNo Access

    APPLICABILITY OF HOMOGENEOUS HUMAN TRUNK PHANTOM IN ESTIMATING THE RADIATION CHARACTERISTICS OF BODY-WORN DEVICES

    In this paper, the radiation characteristics with respect to the suitability of using homogeneous phantom for testing the compliance of radiation frequency devices are assessed. The Finite-Difference Time-Domain (FDTD) method is applied to analyze the variations of a 900 MHz half-wavelength dipole antenna's biological effects and link performance depending on distance between antenna and human body model. The distance between the surface of the model and the outside exposure source is changed from 25 mm to 1 mm within the range of λ/2π. The distributions of the specific absorption rates (SARs) and the electric fields for various vertical slices of a simplified homogeneous phantom and three anatomical human body trunk models are calculated, respectively. The legs and head have little influence on the radiation characteristics of body-worn, ingestible or implantable wireless devices. The results demonstrate that a homogenous representation of human body is suited for assessing the averaged SARs in human body and confirm that the local energy absorption details and communication link performance need to be analyzed by using the anatomical models or by combining with the worst-case consideration.