Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    LOGISTIC REGRESSION MODELING OF SOFTWARE QUALITY

    Reliable software is mandatory for complex mission-critical systems. Classifying modules as fault-prone, or not, is a valuable technique for guiding development processes, so that resources can be focused on those parts of a system that are most likely to have faults.

    Logistic regression offers advantages over other classification modeling techniques, such as interpretable coefficients. There are few prior applications of logistic regression to software quality models in the literature, and none that we know of account for prior probabilities and costs of misclassification. A contribution of this paper is the application of prior probabilities and costs of misclassification to a logistic regression-based classification rule for a software quality model.

    This paper also contributes an integrated method for using logistic regression in software quality modeling, including examples of how to interpret coefficients, how to use prior probabilities, and how to use costs of misclassifications. A case study of a major subsystem of a military, real-time system illustrates the techniques.

  • chapterNo Access

    AN APPLICATION OF GENETIC PROGRAMMING TO SOFTWARE QUALITY PREDICTION

    Because highly reliable software is becoming an essential ingredient in many systems, software developers apply various techniques to discover faults early in development, such as more rigorous reviews, more extensive testing, and strategic assignment of key personnel. Our goal is to target reliability enhancement activities to those modules that are most likely to have problems. This paper presents a methodology that incorporates genetic programming for predicting the order of software modules based on the expected number of faults. This is the first application of genetic programming to software engineering that we know of. We found that genetic programming can be used to generate software quality models whose inputs are software metrics collected earlier in development, and whose output is a prediction of the number of faults that will be discovered later in development or during operations. We established ordinal evaluation criteria for models, and conducted an industrial case study of software from a military communications system. Case study results were sufficiently good to be useful to a project for choosing modules for extra reliability enhancement treatment.