Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Enhanced Magnetoresistance Effect in Graphene Coupled to a Ferromagnetic Oxide with Charge Orbital Ordering

    SPIN17 May 2022

    In this paper, we fabricated graphene/Fe3O4 heterostructure devices by stacking monolayer graphene on magnetite (Fe3O4) substrate and investigated their magneto-transport properties. Interestingly, graphene/Fe3O4 heterostructure devices exhibit a giant magnetoresistance (MR) of 70% at a low magnetic field of 0.65T and at 11K, which is three times greater than that of graphene on SiO2. Based on standard two-fluid model and LDA+U simulation, we showed that the observed enhanced MR effect is due to the increased disorder in graphene induced through the charge polarization via the alignment of C atoms of graphene over the charge ordered B-site cations of Fe3O4. Our results demonstrate a potential way to enhance graphene MR effect through coupling graphene with a suitable substrate with charge orbital ordering.