Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Experimental Studies Using Statistical Algorithms on Transliterating Phoneme Sequences for English–Chinese Name Translation

    Machine transliteration is automatic generation of the phonetic equivalents in a target language given a source language term, which is useful in many cross language applications. Transliteration between far distant languages, e.g. English and Chinese, is challenging because their phonological dissimilarities are significant. Existing techniques are typically rule-based or statistically noisy channel-based. Their accuracies are very low due to their intrinsic limitations on modeling transcription details. We propose direct statistical approaches on transliterating phoneme sequences for English–Chinese name translation. Aiming to improve performance, we propose two direct models: First, we adopt Finite State Automata on a process of direct mapping from English phonemes to a set of rudimentary Chinese phonetic symbols plus mapping units dynamically discovered from training. An effective algorithm for aligning phoneme chunks is proposed. Second, contextual features of each phoneme are taken into consideration by means of Maximum Entropy formalism, and the model is further refined with the precise alignment scheme using phoneme chunks. We compare our approaches with the noisy channel baseline that applies IBM SMT model, and demonstrate their superiority.