Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Adaptive complementary ensemble EMD and energy-frequency spectra of cryptocurrency prices

    In this study, we study the price dynamics of cryptocurrencies using adaptive complementary ensemble empirical mode decomposition (ACE-EMD) and Hilbert spectral analysis. This is a multiscale noise-assisted approach that decomposes any time series into a number of intrinsic mode functions, along with the corresponding instantaneous amplitudes and instantaneous frequencies. The decomposition is adaptive to the time-varying volatility of each cryptocurrency price evolution. Different combinations of modes allow us to reconstruct the time series using components of different timescales. We then apply Hilbert spectral analysis to define and compute the instantaneous energy-frequency spectrum of each cryptocurrency to illustrate the properties of various timescales embedded in the original time series.