Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    A Time-Interleaved Statistically-Driven Two-Step Flash ADC for High-Speed Wireline Applications

    This paper presents a statistically-driven two-step flash sub-analog-to-digital converter (ADC) to construct the high-speed time-interleaved ADC in wireline communication applications. The comparators in the flash sub-ADC are divided into the large probability first stage and the small probability second stage to take advantage of the nonuniform probability distribution of the input signal. At the first step of operation, the large probability first stage is activated while the small probability second stage is suspended. If the input signal is beyond the input range of the first stage, the segment selection signal will trigger proper segment in the second stage. Feed-forward equalization is proposed to manipulate the probability distribution of the ADC input signal. A possible implementation of the proposed ADC as well as the modulation and equalization scheme is presented to comply with the IEEE 802.3ap 10G Ethernet standard. In the case of a PAM-4 pseudorandom signal, the proposed solution achieves 66% reduction on the average number of activated comparators compared to a conventional flash ADC.