Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

Bestsellers

Linear Algebra and Optimization with Applications to Machine Learning
Linear Algebra and Optimization with Applications to Machine Learning

Volume I: Linear Algebra for Computer Vision, Robotics, and Machine Learning
by Jean Gallier and Jocelyn Quaintance
Linear Algebra and Optimization with Applications to Machine Learning
Linear Algebra and Optimization with Applications to Machine Learning

Volume II: Fundamentals of Optimization Theory with Applications to Machine Learning
by Jean Gallier and Jocelyn Quaintance

 

  • articleNo Access

    HYBRID FUZZY LOGIC-BASED PARTICLE SWARM OPTIMIZATION FOR FLOW SHOP SCHEDULING PROBLEM

    This paper, proposes a hybrid fuzzy logic-based particle swarm optimization (PSO) with cross-mutated operation method for the minimization of makespan in permutation flow shop scheduling problem. This problem is a typical non-deterministic polynomial-time (NP) hard combinatorial optimization problem. In the proposed hybrid PSO, fuzzy inference system is applied to determine the inertia weight of PSO and the control parameter of the proposed cross-mutated operation by using human knowledge. By introducing the fuzzy system, the inertia weight becomes adaptive. The cross-mutated operation effectively forces the solution to escape the local optimum. To make PSO suitable for solving flow shop scheduling problem, a sequence-order system based on the roulette wheel mechanism is proposed to convert the continuous position values of particles to job permutations. Meanwhile, a new local search technique namely swap-based local search for scheduling problem is designed and incorporated into the hybrid PSO. Finally, a suite of flow shop benchmark functions are employed to evaluate the performance of the proposed PSO for flow shop scheduling problems. Experimental results show empirically that the proposed method outperforms the existing hybrid PSO methods significantly.