Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Flight endurance is still a bottleneck for many types of unmanned air vehicle (UAV) applications. While battery technology improves over the years, for flights that last an entire day, batteries are still insufficient. Hydrogen-powered fuel cells offer an interesting alternative but pose stringent requirements on the platform. The required cruise power must be sufficiently low and flying with a pressurized tank poses new safety and shape constraints. This paper proposes a hybrid transitioning UAV that is optimized towards carrying a hydrogen tank and fuel cell. Hover is achieved using 12 redundant propellers connected to a dual Controller Area Network (CAN) bus and dual power supply. Forward flight is achieved using a tandem wing configuration. The tandem wing not only minimizes the required wingspan to minimize perturbations from gusts during hover, but it also handles the very large pitch inertia of the inline pressure tank and fuel cell very well. During forward flight, 8 of the 12 propellers are folded while the tip propellers counteract the tip vortexes. The propulsion is tested on a force balance and the selected fuel cell is tested in the lab. Finally, a prototype is built and tested in-flight using battery power. Stable hover, good transitioning properties, and stable forward flight are demonstrated.
Environmentally responsible and minimal natural variation in electric power generation has been a goal of researchers for several decades. With the establishment of the electrical power generation potential from microalgae’s photosynthesis, several researchers revealed interesting microbial fuel cell configurations to improve the output of electrical parameters. However, little work is done to understand the electrical charge collected from photosynthesis. This article proposes a fuel cell-based electrochemical modeling of the micro-photosynthetic power cell. The model is developed, excluding significant analytical assumptions at stationary conditions. Due to the complexity of modeling the electron release from photosynthesis, the electron release reactions are substituted with a simpler redox coupler of similar electric potential to that of photosynthesis. The micro-photosynthetic power cell revealed that the electron collection rate does not directly correlate to the photosynthesis electron chain. It might remain constant for a specific electrical load. The peak power is obtained at a different operating loading than the internal resistance of the device. The experimental open circuit voltage (∼0.96V) and the peak power (∼0.18mW) are predicted accurately by this modeling approach. The results show that the fill factor remains constant with respect to several effective electrode surface areas. Based on this theoretical modeling, we believe that with optimized algal physiological state and micro-photosynthetic power cell’s effective surface area, this micro-photosynthetic power cell will be useful for application in low-power applications.