Please login to be able to save your searches and receive alerts for new content matching your search criteria.
In this paper, we examine the impact of vehicles executing a full turn or U-turn in a single-lane roundabout system using a cellular automaton model. We investigate how increasing the number of these U-turning vehicles affects traffic flow characteristics and energy dissipation. Our findings reveal that as the prevalence of U-turning vehicles rises, the phase diagram undergoes significant changes; the maximum current phase expands, detrimentally impacting the free flow and congestion phases, while giving rise to a jamming phase. This shift results in a gradual increase in capacity at circulating lanes and a steady decline at entry/exit lanes. We also explore the role of aimless vehicles — those circulating without a fixed destination. As the proportion of such vehicles augments, it fosters an enlargement of the maximum current phase at the expense of the free flow and congestion phases. Furthermore, these vehicles influence energy dissipation across the three lanes of a roundabout. Significantly, we elucidate that variations in the percentage of these specific vehicular groups critically affect CO2 emissions. Our research unravels vital insights into optimizing roundabout management to enhance traffic flow and reduce environmental impact.