Spiking neural P systems were introduced in the end of the year 2005, in the aim of incorporating in membrane computing the idea of working with unique objects ("spikes"), encoding the information in the time elapsed between consecutive spikes sent from a cell/neuron to another cell/neuron. More than one dozen of papers where written in the meantime, clarifying many of the basic properties of these devices, especially related to their computing power.
The present paper quickly surveys the basic ideas and the basic results, presenting a complete to-date bibliography, and also giving a completing result related to the normal forms possible for spiking neural P systems: we prove that the indegree of such systems (the maximal number of incoming synapses of neurons) can be bounded by 2 without losing the computational completeness.
A series of research topics and open problems are formulated.