Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    AN IMPROVED GENETIC ALGORITHM BASED FUZZY-TUNED NEURAL NETWORK

    This paper presents a fuzzy-tuned neural network, which is trained by an improved genetic algorithm (GA). The fuzzy-tuned neural network consists of a neural-fuzzy network and a modified neural network. In the modified neural network, a neuron model with two activation functions is used so that the degree of freedom of the network function can be increased. The neural-fuzzy network governs some of the parameters of the neuron model. It will be shown that the performance of the proposed fuzzy-tuned neural network is better than that of the traditional neural network with a similar number of parameters. An improved GA is proposed to train the parameters of the proposed network. Sets of improved genetic operations are presented. The performance of the improved GA will be shown to be better than that of the traditional GA. Some application examples are given to illustrate the merits of the proposed neural network and the improved GA.

  • articleNo Access

    FUZZY REGRESSION MODELING FOR TOOL PERFORMANCE PREDICTION AND DEGRADATION DETECTION

    In this paper, the viability of using Fuzzy-Rule-Based Regression Modeling (FRM) algorithm for tool performance and degradation detection is investigated. The FRM is developed based on a multi-layered fuzzy-rule-based hybrid system with Multiple Regression Models (MRM) embedded into a fuzzy logic inference engine that employs Self Organizing Maps (SOM) for clustering. The FRM converts a complex nonlinear problem to a simplified linear format in order to further increase the accuracy in prediction and rate of convergence. The efficacy of the proposed FRM is tested through a case study — namely to predict the remaining useful life of a ball nose milling cutter during a dry machining process of hardened tool steel with a hardness of 52–54 HRc. A comparative study is further made between four predictive models using the same set of experimental data. It is shown that the FRM is superior as compared with conventional MRM, Back Propagation Neural Networks (BPNN) and Radial Basis Function Networks (RBFN) in terms of prediction accuracy and learning speed.

  • articleNo Access

    DYNAMICAL RECURRENT NEURO-FUZZY IDENTIFICATION SCHEMES EMPLOYING SWITCHING PARAMETER HOPPING

    In this paper we analyze the identification problem which consists of choosing an appropriate identification model and adjusting its parameters according to some adaptive law, such that the response of the model to an input signal (or a class of input signals), approximates the response of the real system for the same input. For identification models we use fuzzy-recurrent high order neural networks. High order networks are expansions of the first-order Hopfield and Cohen-Grossberg models that allow higher order interactions between neurons. The underlying fuzzy model is of Mamdani type assuming a standard defuzzification procedure such as the weighted average. Learning laws are proposed which ensure that the identification error converges to zero exponentially fast or to a residual set when a modeling error is applied. There are two core ideas in the proposed method: (1) Several high order neural networks are specialized to work around fuzzy centers, separating in this way the system into neuro-fuzzy subsystems, and (2) the use of a novel method called switching parameter hopping against the commonly used projection in order to restrict the weights and avoid drifting to infinity.