Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    DELAY-INDEPENDENT STABILITY OF GENETIC REGULATORY NETWORKS WITH TIME DELAYS

    In an organism, genes encode proteins, some of which in turn regulate other genes. Such interactions work in highly structured but incredibly complex ways, and make up a genetic regulatory network. Recently, nonlinear delay differential equations have been proposed for describing genetic regulatory networks in the state-space form. In this paper, we study stability properties of genetic regulatory networks with time delays, by the notion of delay-independent stability. We first present necessary and sufficient conditions for delay-independent local stability of genetic regulatory networks with a single time delay, and then extend the main result to genetic regulatory networks with multiple time delays. To illustrate the main theory, we analyze delay-independent stability of three genetic regulatory networks in E. coli or zebra fish. For E. coli, an autoregulatory network and a repressilatory network are analyzed. The results show that these two genetic regulatory networks with parameters in the physiological range are delay-independently robustly stable. For zebra fish, an autoregulatory network for the gene her1 is analyzed. The result shows that delay-independent stability of this network depends on the initial number of protein molecules, which is in agreement with the existing biological knowledge. The theories presented in this paper provide a very useful complement to the previous work and a framework for further studying the stability of more complex genetic regulatory networks.