A novel titanium dioxide–graphene–polyaniline (TiO2–RGO–PANI) hybrid was prepared by the one-pot method and used as a nonenzymatic electrochemical sensor for glucose detection. The composition and structural morphology of the as-prepared composites were determined by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The characterization results showed that TiO2–RGO–PANI is mainly composed of Ti, O, C and N and their weight percentages are 67.68%, 21.57%, 10.70% and 0.05%, respectively, indicating that the TiO2–RGO–PANI composite catalyst has been successfully prepared and presents a poriferous coral structure. A series of electrochemical tests such as cyclic voltammetry tests declared that TiO2–RGO–PANI composite possessed a low limit of detection (LOD) (7.46μM), good repeatability, selectivity and stability. In the concentration range of 10–180μM, the hybrid presented linear diffusion, and the linear equation was Ipa=0.21338+0.01392 (C/mM), the correlation coefficient R2=0.9912. In addition, the comparison of the merits of this proposed electrode with some recent nonenzymatic glucose sensors indicates that this highly sensitive TiO2–RGO–PANI complex glucose sensor provides a simple, low-cost, nonenzymatic method for glucose detection, and has promising applications in clinical diagnostics and medical analysis.