Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    NANOSTRUCTURED Pt–Ir NON-ENZYMATIC GLUCOSE SENSORS

    Over the past decade, the development of non-enzymatic electrochemical biosensors had thriven at a considerable rate. Compared with the traditional enzymatic electrochemical biosensors, the non-enzymatic electrochemical biosensors have the advantages of higher sensitivity and stability. Recently, plenty of researches have devoted to synthesizing new materials, such as bimetallic nanoparticles, and also develop specific nanostructures on the sensor surface to solve the problem of poisoning and increase the selectivity. This work develops two non-enzymatic glucose sensors that are based on nanostructured Pt–Ir films which were deposited by electrodeposition. Because of the relatively high deposition current density, bubbles produced vigorously on the working electrode surface. This phenomenon results in leaf-like nanostructure formed naturally on the surface of the working electrode and further increased the catalytic reaction area. Besides, as determined by the sampling analysis method that is developed herein, the presented Pt–Ir sensors mitigate the current drifting problem which is easily observed when a constant potential is applied in an amperometric glucose detection. Furthermore, the presented Pt–Ir sensors show high sensitivity and stability in 1X PBS (0.15 M NaCl) at 37°C in the glucose concentration range of 1–12 mM. Therefore, the presented non-enzymatic glucose sensors not only provide great potential in biomedical applications, such as homecare products, but can also be adapted for the biological application, such as continuous cell culture monitoring.