Please login to be able to save your searches and receive alerts for new content matching your search criteria.
The processing of fine-grained particles with diameters between 1 and 10 microns is difficult due to strong van-der-Waals attraction forces. In order to improve the handling properties, the fine-grained particles, i.e. host-particles, are coated with various nanoparticles, i.e. guest-particles. The mixing of fine-grained powders is influenced by particl-particle interactions. If these forces are distinctively used, both interactive and ordered mixtures can be produced. These particle mixtures consist of composite-particles that have new physical properties. These modified properties depend strongly on the coating process, the diameter- and mass-relationship of the guest- and the host-particles. The properties of the composite-particles can systematically be adjusted to the requirements of industrial applications. For example, a laboratory bubbling fluidized bed can be used to describe the conveying behavior of the functionalized host-particles. Applications for the functionalized particles are in the pharmaceutical and the powder coating industries, e.g. enhanced dry powder inhalers and thin lacquer films. The present research compares three different mixing/coating processes. The composite-particles are characterized by TEM, SEM and with their fluidization characteristics. The coating process itself is monitored by the electrostatic charge of the particles.