Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

Bestsellers

Handbook of Machine Learning
Handbook of Machine Learning

Volume 1: Foundation of Artificial Intelligence
by Tshilidzi Marwala
Handbook on Computational Intelligence
Handbook on Computational Intelligence

In 2 Volumes
edited by Plamen Parvanov Angelov

 

  • articleNo Access

    CELLULAR GRAVITY

    We consider the problem of establishing gravity in cellular automata. In particular, when cellular automata states can be partitioned into empty, particle, and wall types, with the latter enclosing rectangular areas, we desire rules that will make the particles fall down and pile up on the bottom of each such area. We desire the rules to be both simple and time-efficient. We propose a block rule, and prove that it piles up particles on a grid of height h in time at most 3*h.

  • chapterNo Access

    METHODS IN THE ANALYSIS OF THE EFFECTS OF GRAVITY AND WALL PROPERTIES IN BLOOD FLOW THROUGH VASCULAR SYSTEMS

    Simple one-dimensional models of blood flow are widely used in simulating the transport of blood around the human vasculature. However, the effects of gravity have only been previously examined briefly and the effects of changes in wall properties and their interaction with gravitational forces have not been investigated. Here the effects of both gravitational forces and local changes in wall stiffness on the one-dimensional flow through axisymmetric vessels are studied. The governing fluid dynamic equations are derived from the Navier-Stokes equations for an incompressible fluid and linked to a simple model of the vessel wall, derived here from an exponential stress-strain relationship. A closed form of the hyperbolic partial differential equations is found. The flow behavior is examined in both the steady state and for wave reflection at a junction between two sections of different wall stiffness. A significant change in wave reflection coefficient is found under the influence of gravity, particularly at low values of baseline non-dimensional wall stiffness.