World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Enhancing Quadrotor Resilience in Outdoor Operations with Real-time Wind Gust Measurement by using LiDAR

    https://doi.org/10.1142/S2301385026500081Cited by:0 (Source: Crossref)

    Unmanned Aerial Vehicles (UAVs) encounter wind gusts during outdoor operations, impacting their position holding, particularly for quadrotors. This vulnerability is amplified during the autonomous docking to outdoor charging stations. The integration of real-time wind preview information for UAV gust rejection control has become more feasible with advances in remote wind sensor technologies like LiDAR. In this study, a ground-based LiDAR system is proposed to predict wind gusts at the landing site of quadrotors. The acquired wind preview data are subsequently utilized by the Model Predictive Control (MPC) to effectively mitigate disturbances. To validate the proposed methodology, a nonlinear simulation environment has been established using LiDAR data collected from comprehensive field tests. The results demonstrate a notable improvement in the system performance compared to benchmark results. This research underscores the practical utility of real-time wind preview information, facilitated by LiDAR technology, in enhancing the overall operational resilience of UAVs, especially quadrotors, during challenging environmental conditions.

    This paper was recommended for publication in its revised form by editorial board member, Shenghai Yuan.