Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    COMPARISON BETWEEN DISCRETE AND PACKET WAVELET TRANSFORM ANALYSES IN THE STUDY OF HEARTBEAT CARDIAC SOUNDS

    This work investigates the study of heartbeat cardiac sounds through time–frequency analysis by using the wavelet transform method. Heart sounds can be utilized more efficiently by medical doctors when they are displayed visually rather through a conventional stethoscope. Heart sounds provide clinicians with valuable diagnostic and prognostic information. Although heart sound analysis by auscultation is convenient as a clinical tool, heart sound signals are so complex and nonstationary that they are very difficult to analyze in the time or frequency domain. We have studied the extraction of features from heart sounds in the time–frequency (TF) domain for the recognition of heart sounds through TF analysis. The application of wavelet transform (WT) for heart sounds is thus described. The performances of discrete wavelet transform (DWT) and wavelet packet transform (WP) are discussed in this paper. After these transformations, we can compare normal and abnormal heart sounds to verify the clinical usefulness of our extraction methods for the recognition of heart sounds.

  • articleNo Access

    SEGMENTATION OF HEART SOUNDS AND HEART MURMURS

    Heart murmurs are often the first signs of pathological changes of the heart valves, and are usually found during auscultation in primary health care. Many pathological conditions of the cardiovascular system cause murmurs and aberrations in heart sounds. Phonocardiography provides the clinician with a complementary tool to record the heart sounds heard during auscultation. The advancement of intracardiac phonocardiography, combined with modern digital processing techniques, has strongly renewed researchers' interest in studying heart sounds and murmurs. This paper presents an algorithm for the detection of heart sounds (the first and second sounds, S1 and S2) and heart murmurs. The segmentation algorithm, which separates the heart signal (or the phonocardiogram (PCG) signal), is based on the normalized average Shannon energy of the PCG signal. This algorithm makes it possible to isolate individual sounds (S1 or S2) and murmurs to give an assessment of their average duration.