Please login to be able to save your searches and receive alerts for new content matching your search criteria.
This work investigates the study of heartbeat cardiac sounds through time–frequency analysis by using the wavelet transform method. Heart sounds can be utilized more efficiently by medical doctors when they are displayed visually rather through a conventional stethoscope. Heart sounds provide clinicians with valuable diagnostic and prognostic information. Although heart sound analysis by auscultation is convenient as a clinical tool, heart sound signals are so complex and nonstationary that they are very difficult to analyze in the time or frequency domain. We have studied the extraction of features from heart sounds in the time–frequency (TF) domain for the recognition of heart sounds through TF analysis. The application of wavelet transform (WT) for heart sounds is thus described. The performances of discrete wavelet transform (DWT) and wavelet packet transform (WP) are discussed in this paper. After these transformations, we can compare normal and abnormal heart sounds to verify the clinical usefulness of our extraction methods for the recognition of heart sounds.
Heart murmurs are often the first signs of pathological changes of the heart valves, and are usually found during auscultation in primary health care. Many pathological conditions of the cardiovascular system cause murmurs and aberrations in heart sounds. Phonocardiography provides the clinician with a complementary tool to record the heart sounds heard during auscultation. The advancement of intracardiac phonocardiography, combined with modern digital processing techniques, has strongly renewed researchers' interest in studying heart sounds and murmurs. This paper presents an algorithm for the detection of heart sounds (the first and second sounds, S1 and S2) and heart murmurs. The segmentation algorithm, which separates the heart signal (or the phonocardiogram (PCG) signal), is based on the normalized average Shannon energy of the PCG signal. This algorithm makes it possible to isolate individual sounds (S1 or S2) and murmurs to give an assessment of their average duration.