Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleOpen Access

    Thermal analysis and performance investigations of shell and tube heat exchanger using numerical simulations

    The steam condenser is a crucial component in power plants, playing a vital role in influencing the overall performance of steam power plants. This paper delves into a detailed assessment of the thermal aspects and evaluation of steam surface condensers. To conduct this rigorous evaluation, we meticulously crafted a three-dimensional (3D) model of a multi-tube single-pass counter-flow heat exchanger using ANSYS Design-Modeller. Within this model, a multiphase mixture model was harnessed to replicate the condensation process that takes place within the condenser. After the model’s development, a series of computational fluid dynamics (CFD) simulations were expertly executed utilizing ANSYS Fluent Workbench. The simulations encompassed diverse cooling water flow rates and steam inlet velocities. Notably, two sets of CFD simulations were carried out: the initial set featured a velocity inlet in the condenser, while the second set involved CFD simulations with a pressure steam inlet. The findings derived from these simulations unveiled a noteworthy correlation between the condensation rate within the shell and both the rate of circulating water flow and the operational pressure of the condenser. Additionally, it was discerned that the condensation rate could be further influenced by the specific geometry of the condenser. In sum, this study concludes that optimizing the geometrical configuration and baffle arrangements holds promise for increasing the condensation rate and overall performance of steam condensers employed within steam power plants.

  • articleOpen Access

    MODELING AND VERIFICATION OF HEAT AND MOISTURE TRANSFER IN AN ENTHALPY EXCHANGER MADE OF PAPER MEMBRANE

    In this study, heat and moisture transfer model of an enthalpy exchanger is proposed. With separately measured sorption constant and diffusion coefficient, the model predicts the heat and moisture transfer effectiveness of an enthalpy exchanger. Two sample enthalpy exchangers were tested at a KS condition to verify the model. The model predicts the heat transfer effectiveness within 4%, and the moisture transfer effectiveness within 10%. Pressure drop is predicted within 6%. The spacer fin efficiency for heat transfer was 0.11 to 0.13. The fin efficiency for moisture transfer, however, was negligibly small. For heat transfer, the conduction resistance to total thermal resistance was less than 1%. For moisture transfer, however, membrane resistance was dominant to convective moisture transfer resistance.

  • articleOpen Access

    THERMAL PERFORMANCE OF WIND TURBINE POWER SYSTEM'S ENGINE ROOM

    Greatly expanded use of wind energy has been proposed to reduce dependence on fossil and nuclear fuels for electricity generation. For wind turbine power generation, as a mature technology in the field of wind power utilization, its large-scale deployment is limited by the cooling technology. Therefore, the temperature distribution of the wind turbine power generation is a key issue for the design of the cooling system. It is because the characteristics of cooling system have a great effect on the performance of the wind turbine power generation. Based on some assumptions and simplifications, a thermal model is developed to describe the heat transfer behavior of wind turbine power system. The numerical calculation method is adopted to solve the governing equation. The heat generation and heat flux are investigated with a given operating boundary. The achieved results can be used to verify whether the cooling system meets the design requirements. Meanwhile, they also can reveal that among the influencing factors, the meteorological conditions, generated output and operation state as well seriously influence its thermal performance. Numerical calculation of the cooling system enables better understanding and results in performance improvement of the system.

  • articleOpen Access

    HEAT TRANSFER ON PERIODICALLY DIMPLE-PROTRUSION PATTERNED WALLS IN TURBULENT CHANNEL FLOW

    In this study, heat transfer characteristics and flow structures over periodically dimple-protrusion patterned walls in a turbulent channel flow were systematically investigated using Detached Eddy Simulation method. The periodically patterned surface is applied to the bottom wall only in the test channel. It is found that larger depth/height induces higher friction factor and heat transfer. Furthermore, the highest Nusselt number is found to be located at the upstream portion of protrusion and the downstream portion of dimple. Additionally, the distributions of Nusselt number exhibit symmetrical features for the small depth/height configuration and asymmetric characteristics for the large depth/height configuration.

  • articleOpen Access

    NUMERICAL SIMULATION OF FLOW INSTABILITY AND HEAT TRANSFER

    This paper numerically investigates the physical mechanism of flow instability and heat transfer of natural convection in a cavity with thin fin(s). The left and the right walls of the cavity are differentially heated. The cavity is given an initial temperature, and the thin fin(s) is fixed on the hot wall in order to control the heat transfer. The finite volume method with the SIMPLE scheme is used to simulate the flow. Distributions of the temperature, the pressure, the velocity and the total pressure are achieved. Then, the energy gradient method is employed to study the physical mechanism of flow instability and the effect of the thin fin(s) on heat transfer. Based on the energy gradient method, the energy gradient function K represents the characteristic of flow instability. It is observed from the simulation results that the positions where instabilities take place in the temperature contours accord well with those of higher K value, which demonstrates that the energy gradient method reveals the physical mechanism of flow instability. Furthermore, the effect of the fin length, the fin position, the fin number, and Ra on heat transfer is also investigated. It is found that the effect of the fin length on heat transfer is negligible when Ra is relatively high. When there is only one fin, the most efficient heat transfer rate is achieved as the fin is fixed at the middle height of the cavity. The fin blocks heat transfer with a relatively small Ra, but the fin enhances heat transfer with a relatively large Ra. The fin(s) enhances heat transfer gradually with the increase of Ra under the influence of the thin fin(s). Finally, it is observed that both Kmax and Ra can reveal the physical mechanism of natural convection from different approaches.